These sensors are designed to measure rotating drive torque using a conventional shaft-to-shaft configuration for in-line placement. The design incorporates a coin silver slip ring assembly that transmits excitation voltage to, and output signals from, the rotating sensor. These sensors can be supplied with Auto-ID, which eliminates scaling when used with the PTI or PMAC 2000 instruments. An optical encoder to measure angle or speed is also available with this model.

OPTIONS:

- 4 pin Bendix connector (non Auto-ID)
- 10 pin Bendix connector (Auto-ID)
- Integrated signal amplifier (+/-5V or +/-10V, 4-20mA)
- Integral optical encoder – 1024 ppr and 1500 ppr (requires 10 pin connector)
- Footmount

SPECIFICATIONS

- Capacity: 50 in. oz. to 20,000 in.lb. (.35 to 2300Nm)
- Overload capacity: 150% of F.S.
- Output at F.S.: 2.0 mV/V nominal
- Non-linearity: 0.10% of F.S.
- Hysteresis: 0.10% of F.S.
- Zero balance: 1.00% of F.S.
- Compensated temperature: 70 to 170°F
- Useable temperature: -40 to +185°F
- Temperature effect on zero: 0.002% of F.S./°F
- Temperature effect on span: 0.002% of Rdg./°F
- Bridge resistance: 1000 Ohms
- Excitation voltage, maximum: 20 Vdc
- Maximum shaft speed: 5000 RPM*
Dimensions

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Capacity</th>
<th>Extraneous Load Coefficients</th>
<th>Optional Symm. Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>01324-030</td>
<td>3.125 in. lbs. 150 in. oz.</td>
<td>1.030 56.7 223 4,300</td>
<td>182</td>
</tr>
<tr>
<td>01324-060</td>
<td>6.25 in. lbs. 100 in. oz.</td>
<td>678 26.1 102 2,060</td>
<td>556</td>
</tr>
<tr>
<td>01324-120</td>
<td>12.5 in. lbs. 100 in. oz.</td>
<td>435 18 70.5 997</td>
<td>1,660</td>
</tr>
<tr>
<td>01324-250</td>
<td>25 in. lbs. 100 in. oz.</td>
<td>214 10.9 42.7 390</td>
<td>7,120</td>
</tr>
<tr>
<td>01324-420</td>
<td>42.5 in. lbs. 1000 in. oz.</td>
<td>104 7.3 28.5 175</td>
<td>22,000</td>
</tr>
</tbody>
</table>

Specifications

- **Model:** 01324-XXX-G00XX
- **Capacity:** Charted
- **Output:** F.S. (mV/V Nom.) 2.0
- **Non-Linearity:** %F.S.,%O.S. 0.10
- **Hysteresis:** %F.S.,%O.S. 0.10
- **Bridge Resistance:** (OHM Nom.) 1000
- **Overload (Torque):** 150% F.S.
- **Max RPM:** 5,000
- **Max Temp Range:** -40 to +185°F

Assembly DWG Ref.: 1898200

Installation:

- **Model:** 01324-XXX-G00XX
- **Scale:** 1/2
- **Drawn by:** D.S.
- **Date:** 6-13-01
- **Unless otherwise specified, units are in inches.**

Dimensions (cont.)

<table>
<thead>
<tr>
<th>Model No.</th>
<th>Capacity</th>
<th>Extraneous Load Coefficients</th>
<th>Optional Symm. Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>01324-030</td>
<td>3.125 in. lbs. 150 in. oz.</td>
<td>1.030 56.7 223 4,300</td>
<td>182</td>
</tr>
<tr>
<td>01324-060</td>
<td>6.25 in. lbs. 100 in. oz.</td>
<td>678 26.1 102 2,060</td>
<td>556</td>
</tr>
<tr>
<td>01324-120</td>
<td>12.5 in. lbs. 100 in. oz.</td>
<td>435 18 70.5 997</td>
<td>1,660</td>
</tr>
<tr>
<td>01324-250</td>
<td>25 in. lbs. 100 in. oz.</td>
<td>214 10.9 42.7 390</td>
<td>7,120</td>
</tr>
<tr>
<td>01324-420</td>
<td>42.5 in. lbs. 1000 in. oz.</td>
<td>104 7.3 28.5 175</td>
<td>22,000</td>
</tr>
</tbody>
</table>

Specifications

- **Model:** 01324-XXX-G00XX
- **Capacity:** Charted
- **Output:** F.S. (mV/V Nom.) 2.0
- **Non-Linearity:** %F.S.,%O.S. 0.10
- **Hysteresis:** %F.S.,%O.S. 0.10
- **Bridge Resistance:** (OHM Nom.) 1000
- **Overload (Torque):** 150% F.S.
- **Max RPM:** 5,000
- **Max Temp Range:** -40 to +185°F

Installation:

- **Model:** 01324-XXX-G00XX
- **Scale:** 1/2
- **Drawn by:** D.S.
- **Date:** 6-13-01
- **Unless otherwise specified, units are in inches.**
DIMENSIONS

Torque Sensors – Rotary Shaft Slip Ring

Dimensions Table 1

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>CAPACITY</th>
<th>EXTRAVEOUS LOAD COEFFICIENTS</th>
<th>ORIGIONAL SPANCE (IN./RADx10^2)</th>
<th>Z NOM</th>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>BY</th>
<th>DATE</th>
<th>CHK</th>
<th>ENG</th>
<th>WRK</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01324-012</td>
<td>100 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-022</td>
<td>200 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-023</td>
<td>500 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-031</td>
<td>1000 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-032</td>
<td>1500 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-033</td>
<td>2000 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions Table 2

<table>
<thead>
<tr>
<th>MODEL NO.</th>
<th>CAPACITY</th>
<th>EXTRAVEOUS LOAD COEFFICIENTS</th>
<th>ORIGIONAL SPANCE (IN./RADx10^2)</th>
<th>Z NOM</th>
<th>REV.</th>
<th>DESCRIPTION</th>
<th>BY</th>
<th>DATE</th>
<th>CHK</th>
<th>ENG</th>
<th>WRK</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>01324-012</td>
<td>100 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-022</td>
<td>200 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-023</td>
<td>500 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-031</td>
<td>1000 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-032</td>
<td>1500 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
<tr>
<td>01324-033</td>
<td>2000 LBS</td>
<td>724</td>
<td>79.5</td>
<td>517</td>
<td>431</td>
<td>6.9</td>
<td>8749</td>
<td>3/16</td>
<td>-</td>
<td>-</td>
<td>11-16-39</td>
<td></td>
</tr>
</tbody>
</table>
01324
Torque Sensors – Rotary Shaft Slip Ring

DIMENSIONS

The information provided herein is to the best of our knowledge true and accurate, it is provided for guidance only. All specifications are subject to change without prior notification.

Althen – Your expert partner in Sensors & Controls | althensensors.com

Althen stands for pioneering measurement and custom sensor solutions. In addition we offer services such as calibration, design & engineering, training and renting of measurement equipment.

Germany/Austria/Switzerland
info@althen.de

Benelux
sales@althen.nl

France
info@althensensors.fr

Sweden
info@althensensors.se

USA/Canada
info@althensensors.com

Other countries
info@althensensors.com

Version | 09.2019

The information provided herein is to the best of our knowledge true and accurate, it is provided for guidance only. All specifications are subject to change without prior notification.

Althen – Your expert partner in Sensors & Controls | althensensors.com

Althen stands for pioneering measurement and custom sensor solutions. In addition we offer services such as calibration, design & engineering, training and renting of measurement equipment.

Germany/Austria/Switzerland
info@althen.de

Benelux
sales@althen.nl

France
info@althensensors.fr

Sweden
info@althensensors.se

USA/Canada
info@althensensors.com

Other countries
info@althensensors.com