

TSC12

Mehrkanal-Temperaturscanner

TSC12 Software

EIGENSCHAFTEN

- Simultane Erfassung mehrerer Thermoelementspannungs Signale
- Typen: K, T, J, B, E, N, R, S
- Nichtlinearität & Hysterese max. +/- 1K
- Datenübertragung und Stromversorgung kombiniert via USB-Anschluss
- Optional mit CAN Bus, LAN oder RS232 lieferbar
- Inkl. Software und Treiber f
 ür LabVIEW

KUNDENSPEZIFISCHE ANPASSUNGEN

- Auswahl des Thermoelementanschluss-Typs mit verschiedenen Messbereichen
- Auswahl der der Schnittstellen zur Datenkommunikation

ANWENDUNGEN

- Mehrkanal Temperaturmessungen in der Automobil Industrie
- Temperaturmessung in Kühlern und thermischen Prozessen mit vielen Temperaturmessstellen

TEMPERATURSCANNER OPTIONEN

Verfügbare	Thermoelement Anschlüss	se
Тур	min °C	max °C
K	-270	1300
J	-210	1200
N	-270	1300
E	-270	1000
Т	-270	400
R	-50	1768
S	-50	1768
В	0	1800
Genauigkeit	und Abtastraten	
Nichtlinearitä	it & Hysterese	max +/- 1K
Auflösung		19-bit
Abtastrate pr	ro Kanal	1-100Hz
Stromverso	rgung	·
TSC12 über		über USB
TSC12-LAN/-CAN 7-24V,		7-24V, 1A
Umgebungs	bedingungen	
Temperatur		5°C50°C
Luftfeuchtigk	eit	095%, nicht kondensierend
Maße		
Gehäuse		130 x 55 x 95 mm (B x H x T)
Treiber und	Software	
Virtueller CO	M-Port-Treiber	
Konfiguration	nssoftware	
LabVIEW-Be	eispielprogramm als Sourcecode	
Unterstützte	Betriebssysteme	
Windows XP	, 7, 8, 10, Linux	
Optionen		
Alle TSC-Sys	steme sind optional mit CAN Bus	, LAN oder RS232 lieferbar

ALLGEMEINE BESCHREIBUNG

Die Temperaturscanner der TSC-Reihe eignen sich zur simultanen Überwachung von 12 Temperaturmessstellen mit hohen Anforderungen bzgl. der Genauigkeit.

Es werden alle gängigen Thermoelement Typen (K, T, J, B, E, N, R, S) unterstützt. Je nach Typ können Temperaturen von -270°C bis +1800°C verarbeitet und überwacht werden.

Der Anschlusstyp kann individuell nach Kundenvorgabe gewählt werden, wobei alle Kanäle standardmäßig mit dem gleichen Sensor-Typ bestückt werden.

Die Datenübertragung erfolgt als ASCII-Text in der Einheit Grad Celsius [°C]. Über ein einfaches Protokoll kann die Übertragungsrate im Bereich zwischen 1 und 100Hz eingestellt werden. Die ASCII Daten lassen sich in Excel importieren und bearbeiten.

Die Stromversorgung der Druckscanner mit USB/CAN-Schnittstelle erfolgt über den USB bzw. CAN-Anschluss. Für die Variante mit LAN-Schnittstelle ist ein externes Netzteil notwendig.

Geräte der TSC Standard und -CAN Variante sind serienmäßig mit einem USB-Anschluss ausgestattet, über welchen sie sich leicht konfigurieren lassen. Über USB mit dem Messrechner verbunden meldet sich der Temperaturscanner als virtueller COM-Port im System an. Damit kann er mit jeder Software verwendet werden, die ein serielles Protokoll unterstützt. Ein Beispielprogramm zur Verwendung mit LabVIEW wird mitgeliefert.

Im Lieferumfang der TSC-CAN Geräte befindet sich darüber hinaus eine passende DBC-Datei.

Auf Nachfrage sind individuelle Anpassungen möglich:

- Auswahl von verschiedenen Anschlusstypen in einem Gerät
- Kombination mehrerer Schnittstellen
- Einbau einer Trigger- oder Alarmfunktion bei bestimmten Temperaturen

SERIELLE SCHNITTSTELLE

Befehl	Funktion	Antwort
EE_LOAD	Kalibrierdaten aus EEPROM laden	#EEPROM:loaded
EE_SAVE	Kalibrierdaten in EEPROM speichern	#EEPROM:saved
*IDN?	Gerätekennung abfragen	TYPE PSC8-USB VERSION 1.0 SER- NUM #SN31xxxxx
RATE x	Abtastrate definieren für Streaming Modus Bereich x = 105000 [ms] Standard: 1000[ms] ~> 1[Hz]	#Rate=x ms #Error: Rate-Range
RATE 0	Abfrage- und Trigger-Modus aktivieren Durch Senden von "?" wird der aktuelle Wert ausgegeben	#Request-Mode active
?	aktuelle Werte anfordern (nur im Request-Mode)	
*RST	Scanliste resetten	#RESET
SCAN_A x SCAN_B x SCAN_C x	Scanlist (Kanalauswahl) definieren Binär, jedes Bit steht für einen Kanal	
FILTER	exponentiellen Filter aktivieren 0 = deaktivert; >0 = Bereich des Filters in ms	#Filter=x
TC x K	Thermoelement Typ von Kanal x auf Typ K setzen (verfügbar: K, T, J, B, E, N, R, S) x=-1 kann verwendet werden, um alle Kanäle auf den gleichen Typ zu setzen	#TC x K #TC K K K K K K K K K K K
TC_OFS x	Offset des Kaltstellen-Sensors setzen Bereich: x= -7,958 [K], ab Werk voreingestellt	#TC_OFS x
TC_OFS?	Offset des Kaltstellen-Sensors auslesen	#TC_OFS x
tx 1	Streaming Modus starten	#TX ON
tx 0	Streaming Modus stoppen	#TX OFF

- nur bei TSC-CAN Variante -				
CAN_ID x	CAN-ID zuweisen	#OK		
CAN_IT x	Interface setzen x = 0: Normal (11bit, CAN 2.0A) x = 1 Extended 23bit (23bit, CAN 2.0B)	#OK		
CAN?	CAN-Konfiguration abfragen	#ID:0x[]_Speed:[baud]_IDT: 0%5.2		
CAN_SPEED x	0: 125 kBaud 1: 250 kBaud 2: 500 kBaud 3: 1 MBaud	#OK		

Ein Befehl wird immer mit einem Zeilenumbruch (CR oder LF oder CR+LF) terminiert. Die Sensornumme3 rierung beginnt in allen Fällen mit der Nummer "1".

TELNET TCP-KOMMUNIKATIONSBEISPIEL

Telnet Verbindung aufbauen				
Telnet installieren oder aktivieren (Windows: https://social.technet.microsoft.com/wiki/contents/articles/910.windows-7-enabling-telnet-client.aspx)				
Terminal öffnen (Windows: cmd.exe)				

"telnet 192.168.1.200 10001" eingeben (die IP des TSC's benutzen. Der Kommunikations Port ist 10001)

Datenübertragunsmodi

A Software Trigger Modus

"?" eingeben (bestätigen mit <enter>) \rightarrow der TSC sendet die neuesten Messdaten im CSV-Format

TCP Befehl	Antwort				
rate 0	#Request-Mode active. Send '?'				
?	21.1200	22.2422	-10.2350	0.0210	-12.7820
R Externer Trigger Modus					

B Externer Trigger Modus

Externen Trigger mit Scanner verbinden \rightarrow bei jedem Triggersignal sendet der TSC die neuesten Messdaten im CSV-Format

TCP Befehl	Antwort					
rate 0	#Request-Mo	de active. Send	1.3.1			
Trigger Signal	21.1200	22.2422	-10.2350	0.0210	-12.7820	

C Streaming Modus

Um die Messwerte koninuierlich auszugeben, muss die Rate auf einen Wert zwishcen 10 und 5000[ms] gesetzt werden, e.g. "rate 100"

TCP Befehl	Antwort					
rate 200	#rate=200ms					
tx 1	#TX ON					
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	• • •					

[&]quot;rate 0" eingeben um in Trigger Modus zu gelangen (bestätigen mit <enter>)

[&]quot;rate 0" eingeben, um in Trigger Modus zu gelangen (bestätigen mit <enter>)

TELNET TCP-KOMMUNIKATIONSBEISPIEL

Datenformat

Die Ausgabedaten werden im CSV-Format gesendet. Die Messwerte sind durch Tabs "\t" getrennt und die Zeilen werden per new line und carriage return Zeichen beendet "/n/r"

Scanliste

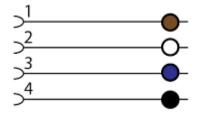
Der SCAN Befehl wird verwendet, um die Kanäle auszuwählen, die gesendet werden sollen.

SCAN_A setzt dabei die ersten 8 Kanäle SCAN_B die darauf folgenden 8 usw. Die nebenstehende Zahl repräsentiert mit ihren 8 Bits die 8 Kanäle (jedes Bit ein Kanal)

 \rightarrow SCAN A 3: nur Kanal 1 und 2 werden gelesen und gesendet (3 = 1 1 0 0 0 0 0 0)

TCP Befehl	Antwort					
rate 200	#rate=200ms					
tx 1	#TX ON					
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
tx 0	#TX OFF					
scan_a 3						
tx 1	#TX ON					
	21.1200	22.2422				
	21.1200	22.2422				
	21.1200	22.2422				
	21.1200	22.2422				
	21.1200	22.2422				
*RST	#RESET					
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	
	21.1200	22.2422	-10.2350	0.0210	-12.7820	

VB.NET BEISPIELCODE


```
' TSC12-Example application -- Continuous mode
' Opens a TCP network stream and gathers the data continuously.
' -> while running, hit any key to exit
Imports System
Imports System.IO
Imports System.Net
Imports System.Net.Sockets
Module TSC streaming
    Sub Main()
        Dim IP As String = "192.168.1.102"
                                                 ' Enter IP address here
        Dim Client = New TcpClient(IP, 10001)
        Dim values() As Double
        Dim d As Double
        Dim strArray() As String
        If Client.Connected Then
            Dim ns = Client.GetStream()
            Dim SR = New StreamReader(ns)
            Dim sw = New StreamWriter(ns)
            Dim line As String
            Dim quitNow = 0
            Dim count = 0
            sw.WriteLine("")
                                             ' If there was something in the send-buf
                                              fer, we can clear that with one linefeed
            sw.WriteLine("RATE 300")
                                             ' Command to set the scanrate to 300ms
                                             ' Command to start the streaming mode
            sw.WriteLine("TX 1")
               Add commands if needed
            sw.Flush()
            While (Not Console.KeyAvailable)
                                              ' every key pressed exits this demo
                line = SR.ReadLine()
                Console.WriteLine(line)
                strArray = line.Split(vbTab)
                If strArray.All(Function(number) Decimal.TryParse(number, d)) Then
                    values = Array.ConvertAll(strArray, Function(c As String) Val(c))
                                        'convert string to doubles for further use
                    ' do something with your values here...
                End If
            End While
            Console.Write("Just as example: last data[0] was: ")
            Console.WriteLine(values(0))
            Console.WriteLine("Closing connection and exiting demo")
            sw.WriteLine("TX 0")
                                        ' Command to stop the streaming mode
            sw.Flush()
            Threading.Thread.Sleep(3000)
            SR.Close()
            sw.Close()
            ns.Close()
            Client.Close()
        End If
    End Sub
```


STECKERBELEGUNG (M8-STECKER)

Standardversion:

Pin	Funktion	Kabel Farbe
1	+ Versorgung	braun
2	nicht verwendet	weiß
3	- Vers. (GND)	blau
6	nicht verwendet	schwarz

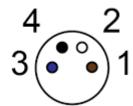
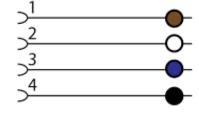
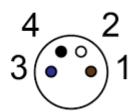
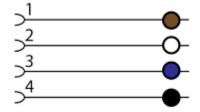
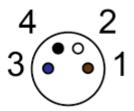



Table 1: Steckerbelegung Standardversion

Triggerversion:

Pin	Funktion	Kabel Farbe
1	+ Versorgung	braun
2	- Trigger	weiß
3	- Vers. (GND)	blau
4	+ Trigger	schwarz


Table 2: Steckerbelegung Triggerversion

CAN Bus Version:

Pin	Funktion	Kabel Farbe
1	+ Versorgung	braun
2	- CAN	weiß
3	- Vers. (GND)	blau
4	+ CAN	schwarz

