
The way PC-based instrumentation should be

Programmer’s Software
Development Kit

User’s Manual

Manual Revision G

Software Release Level 1

Copyright © 1999 by Dataq Instruments, Inc. The Information contained herein is the exclusive property of Dataq
Instruments, Inc., except as otherwise indicated and shall not be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any human or computer language, in any form or by any means, electronic, mechanical,
magnetic, optical, chemical, manual, or otherwise without expressed written authorization from the company. The
distribution of this material outside the company may occur only as authorized by the company in writing.

Dataq Instruments’ hardware and software products are not designed to be used in the diagnosis and treatment of
humans, nor are they to be used as critical components in any life-support systems whose failure to perform can
reasonably be expected to cause significant injury to humans.

Designed and manufactured in the
United States of America

Programmer’s SDK Manual

i

Table of Contents
Programmer’s Software Development Kit ..1

Programmer’s SDK Installation Instructions..1
Manually Modifying the AUTOEXEC.BAT File...3
Batch File Details ...5

Setting The Device Driver Environment Variable ..6
Installing the Device Driver ..6
On-board DSP Program Installation..7

General SDK Information...8

Programmer’s SDK Data Types and Ranges..8
Using INCLUDE Files..8
Input and Output Data Buffer Management ...9

Buffer Allocation...9
Buffer Access ..9

All instruments except DI-401 and DI-700 ..9
DI-401 and DI-700 Instruments ...9
All instruments except DI-401 and DI-700 ..10
DI-401 and DI-700 Instruments ...10

Input and Output Data Buffer Architecture ..10
Converting Counts to Volts ..12
Sampling Different Channels at Different Rates ..14
How Data is Received From an Input Buffer ...18

Function Reference ..19

Programmer’s SDK Functions..19
Hardware Support for Programmer’s SDK Functions..19
Initialization and Information Functions ..20
Buffer Functions ...20
Immediate Functions ..20
Scanning Functions...20
Counter/Timer Functions..21
Miscellaneous Functions ..21
Equivalent HP VEE Functions ...21
Programming Sequences and Flow Charts ...23
Function Reference...29

di_anin ...30
di_anout ...35
di_buffer_alloc ..37
di_buffer_free..38
di_buffer_size..40
di_buffer_status ...41
di_burst_rate..42
di_close..46
di_copy_array..47
di_copy_buffer ..48
di_copy_header ...49
di_copy_mux...51
di_ct_event ..52
di_ct_one_shot...55

Programmer’s SDK Manual

ii

di_ct_status ... 57
di_ct_stop.. 58
di_ct_wave.. 59
di_digin... 61
di_digout... 63
di_get_acq_header .. 64
di_info... 65
di_inlist ... 68
di_list_length .. 78
di_mode .. 79
di_open ... 86
di_outlist ... 87
di_set_data_mode ... 89
di_start_scan ... 90
di_status_read ... 92
di_stop_scan ... 93
di_strerr... 95
di_trigger_status ... 96

Programmer’s SDK Manual

Getting Started
1

Programmer’s Software
Development Kit
The Programmer’s software development kit provides everything you need to program DI-200 Series, DI-400
Series, DI-500 Series, DI-700, DI-720, and DI-730 waveform recording instruments from virtually any standard
programming language.

Note that nothing in this SDK pertains to WINDAQ software. If you purchased WINDAQ software, then you already
have everything you need to record, playback and analyze waveform signals (ignore this manual and refer back to
the hardware manual or to the WINDAQ/Lite or WINDAQ/Pro and WINDAQ/Pro+ User’s Manual). You do not need
to install this software.

If, however you intend to write your own programs (including LabVIEW, TestPoint, HP VEE, etc.) to record,
playback and analyze waveform signals using DI-200 Series, DI-400 Series, DI-500 Series, DI-700, DI-720, or DI-
730 hardware, then this manual contains the information you need. Proceed with the following Programmer’s SDK
installation instructions.

Programmer’s SDK Installation Instructions
The following procedure can be used to install the Programmer’s SDK onto your computer (DI-700 user’s can
ignore the following procedure since SDK files for the DI-700 are automatically installed, along with WINDAQ/Lite
and the WINDAQ Waveform Browser, when the DI-700 is installed).

1. Start Windows™.

2. Insert the Programmer’s Software Development Kit disk into your 3½″ floppy drive.

3. Click the Start button on the taskbar and then click Run… (Windows 95, Windows 98, Windows NT), or from
the Windows™ Program Manager window choose Run from the File menu (Windows 3.1).

4. In the text box that appears, type d:setup (where d specifies the drive containing the Programmer’s SDK
distribution disk) and press ENTER.

A welcome dialog box appears onscreen.

5. Choose the OK button to start the installation.

6. Follow the instructions onscreen to specify the directory where you want to install Programmer’s SDK files.

We recommend you accept the default path, but you can name this new directory anything you
like. Simply substitute the desired drive and directory in the Destination Directory: text box.

7. Choose the OK button.

A dialog box is displayed asking if you would like to make backup copies of all files replaced
during the installation. This is offered as a safety courtesy, backup copies are not required.

Choose the No button if you don’t want to make backups.

Programmer’s SDK Manual

Getting Started
2

Choose the Yes button to create backups. If you decide to create backups, you will be prompted
to specify a backup file directory.

8. Specify the instrument that will be used with the Programmer’s SDK.

For example, choose the DI-400/401 Plug-in Card button if you have a DI-400 board installed.

When the appropriate hardware button is selected and the OK button is chosen, an informational
window is displayed showing the progress of the installation.

9. Specify a destination (or group window) for the Programmer’s SDK icons.

Again we recommend the default path, but you can specify any group window you like.

10. Choose the OK button to continue.

11. The remaining installation steps vary by instrument, and in some cases by operating system (i.e., Windows 3.1,
Windows 95, Windows 98, etc.). In most cases, the on-screen prompts provide enough information to
successfully get you through the installation. However, if you are unsure of what to do next or if you need
additional information, refer to the following instrument specific notes.

For DI-200, DI-210, DI-400, DI-401, and DI-410 Plug-in Boards:
A dialog box is displayed, asking if you would like to have the installation program automatically modify your
AUTOEXEC.BAT file or if you would like to do it yourself manually. We recommend that you have the installation
program do it automatically (by choosing Yes) simply because it’s easier and less likely to create a problem.
However, you can do it either way.

If you choose to manually modify the AUTOEXEC.BAT file yourself (by choosing No), you must use a text editor
that saves files as unformatted (ASCII) text (some text editors refer to this as “text only” format). WordPad and/or
Notepad are examples of text editors that will do the job and come free-of-charge with Windows. Steps for
manually modifying the AUTOEXEC.BAT file appear at the end of this installation procedure.

After the AUTOEXEC.BAT decision is made, a second dialog box is displayed prompting you for a base address.
This is the same value you configured the DIP switches for when you installed the board (if you didn’t change the
DIP switch settings during installation, then choose the default value of 180hex). If you don’t remember how you
configured the DIP switches, refer back to the hardware User’s Manual.

After the base address is specified on all plug-in boards except the DI-200 and DI-210, you must restart (reboot)
your computer to complete the installation. Remove the distribution disk from your drive and choose the OK button
to restart your computer.

On DI-200 and DI-210 boards, a third dialog box is displayed providing the opportunity to alter advanced
configuration settings such as hardware interrupt level, input DMA channel, output DMA channel, and pre-allocated
input data buffer size. Choose the No button, thus declining the opportunity to alter the advanced configuration
options. You should only modify these options if, after the initial installation, you were unable to run the
Programmer’s SDK and you talked to DATAQ Instruments technical support. They can help you determine which
option(s) need to be changed in order to run the Programmer’s SDK. When finished, you must restart (reboot) your
computer to complete the installation. Remove the distribution floppy from your drive and choose the OK button to
restart your computer.

For DI-220, DI-221TC, DI-222, DI-500 Series, DI-720, DI-730, and DI-5001 Instruments:
A dialog box is displayed, asking if you would like to have the installation program automatically modify your
AUTOEXEC.BAT file or if you would like to do it yourself manually. We recommend that you have the installation

Programmer’s SDK Manual

Getting Started
3

program do it automatically (by choosing Yes) simply because it’s easier and less likely to create a problem.
However, you can do it either way.

If you choose to manually modify the AUTOEXEC.BAT file yourself (by choosing No), you must use a text editor
that saves files as unformatted (ASCII) text (some text editors refer to this as “text only” format). WordPad and/or
Notepad are examples of text editors that will do the job and come free-of-charge with Windows. Steps for
manually modifying the AUTOEXEC.BAT file appear at the end of this installation procedure.

After the AUTOEXEC.BAT decision is made, a second dialog box is displayed prompting you to specify the printer
(LPT) or parallel port number to which the instrument is connected. When the proper LPT port is specified, you
must restart (reboot) your computer to complete the installation. Remove the distribution disk from your drive and
choose the OK button to restart your computer.

Manually Modifying the AUTOEXEC.BAT File
The following steps will guide you through the process of manually modifying the AUTOEXEC.BAT file. Note that
this procedure is only necessary when, during the installation, you chose to manually modify the AUTOEXEC.BAT
file. As a precaution, you may want to print a copy of your AUTOEXEC.BAT file before starting. This will give
you a hard copy record of your existing AUTOEXEC.BAT file before any changes are made.

a. Start your text editor.

For example, in Windows 95 start WordPad by clicking the Start button on the
taskbar, pointing to Programs, pointing to Accessories, and clicking WordPad.

b. Using the text editor, open the AUTOEXEC.BAT file.

For example, in WordPad click on the File menu and click Open… This displays the
Open dialog box as follows:

c. When opened, scroll down to the end of your AUTOEXEC.BAT file.

d. At the end of your AUTOEXEC.BAT file, but above the “win” command (if included), add the
following two commands (each command must begin on a separate line):

Programmer’s SDK Manual

Getting Started
4

A typical AUTOEXEC.BAT file:
@echo off
path
c:\;c:\dos;c:\windows
set temp=c:\temp
doskey
smartdrv
win

Add these two commands:

cd\DATAQSDK
call diXXXX.bat

Use the same directory
specified in step 6

Use the appropriate
batch file for your

hardware (see table
below)

The first line directs your computer to go to the directory where Programmer’s SDK files are installed.
The second line executes a batch file that is required for software operation. The proper batch file to
enter in this line can be found in the following table. Note that this batch file is dependent on the
instrument you are using:

If you have this
hardware:

Use this batch
file:

Plug-in boards
DI-200 di200.bat
DI-201 Di201m.bat
DI-210 di210.bat
DI-400 di400.bat
DI-401 di400.bat
DI-410 di400.bat

Printer port instruments
DI-220/DI-222 di220.bat

DI-221TC di221.bat
DI-500 di500.bat
DI-510 di500.bat
DI-720 di720 .bat
DI-730 di730.bat

DI-5001 di720.bat

For example, say we have a DI-500-16-P instrument. A typical AUTOEXEC.BAT file, with the added
commands, would look similar to this:

@echo off
path c:\;c:\dos;c:\windows
set temp=c:\temp
doskey
smartdrv
cd\dataqsdk
call di500.bat
win

Note that if the “win” command is not included in your AUTOEXEC.BAT file, the two lines just
entered will be at the bottom of the file.

e. When finished, save the changes to the AUTOEXEC.BAT file (save as a text file only!) and exit the
text editor.

f. Restart (re-boot) your computer.

Programmer’s SDK Manual

Getting Started
5

The batch file you just added to your AUTOEXEC.BAT file automatically sets an
environment variable, installs a device driver, downloads the DSP program to the
hardware, and on parallel port instruments, specifies the printer (LPT) port to which
the hardware is connected. This batch file installs all default values for these
parameters. If you need to install a parameter other than the default value, you must
edit the appropriate batch file. This can be done with your text editor using an
approach similar to that used to edit the AUTOEXEC.BAT file. Complete batch file
details follow this installation procedure.

Note
Using DI-220, DI-221TC, or DI-222 Instruments with Windows 3.1 or 3.11:

If you have a DI-220, DI-221TC, or DI-222 battery-powered instrument and you are
using Windows 3.1 or 3.11, power will be applied to the instrument (thus beginning
battery-powered operation) immediately after booting. This may not be desirable,
especially when using the instrument “in the field”, where conserving battery power
is an important consideration. However, power can be turned off by issuing the
loader command without an argument. For example, typing 220LDR and pressing
the ENTER key turns instrument power off. To turn instrument power back on when
you are ready to run your application, simply issue the loader command with the
proper argument (type 220LDR DI-220.BNM).

Note
Using DI-220, DI-221TC, or DI-222 Instruments with Windows 95:

Under Windows 95, a copy of the “DI-22X Power On” icon is placed in your Startup
folder if you are using a DI-220, DI-221TC, or DI-222 battery-powered instrument.
It is this icon that automatically applies power to the instrument immediately after
booting. If this is undesirable, you can delete this item from your Startup folder and
manually control instrument power. This is done by issuing the loader command
with the proper argument. For example, instrument power is turned on by clicking
the Start button on the taskbar, clicking Run, and typing 220LDR DI-220.BNM in
the dialog box that appears. To turn instrument power off when the instrument is not
in use, simply issue the loader command without an argument (type 220LDR in the
dialog box).

g. You are now ready to start developing applications with the Programmer’s SDK. The following
illustrates a “roadmap” of what was installed:

Root Directory

DOS

WIN

Batch files, drivers, executables, readme’s, etc.

C

QB

TPASCAL

VBDOS

C

VB

“C” files and sample programs for DOS

Quick BASIC files and sample programs for DOS

Turbo PASCAL files and sample programs for DOS

Visual BASIC files and sample programs for DOS

“C” files and sample programs for Windows

Visual BASIC files and sample programs for Windows

DI-700 InstrumentsAll Instruments except DI-700

WINDAQU (default) Directory

SDK

3 Windows “C” header files

Library that links to the DLL

Sample program source code

Sample program

Make file

WINDAQ/Lite, WWB, etc.

Batch File Details
The following command structure lists the major items in the batch file. You should only be concerned with the
following descriptions if you need to edit the batch file.

Programmer’s SDK Manual

Getting Started
6

Setting The Device Driver Environment Variable

Form: SET DI= value

Where: Only one space exists in the command line, immediately following SET. Value defines the
software interrupt level to be used for the instrument’s device driver. Value can be 60, 61, 62,
63, 64, 65, or 66. Default value is 60.

Example: SET DI=60

Installing the Device Driver

Form (2 kinds): For Plug-in Boards: For Printer Port Instruments:
DI-x00 [PORT] [HI] [DI] [DO] DI-xxx [LPT]

Where: All arguments (shown in brackets) are in hexadecimal format and must be separated by a
space.

PORT - specifies the hardware base address selected for the DI-200, or DI-400 Series
instrument as instructed by their respective hardware user’s manual. The three least significant
bits must be zero. The range for PORT is 100H ≤ PORT ≤ 3F8. The default value is 180H.

HI - specifies the hardware interrupt level selected for the DI-200 Series instrument as
instructed by their respective hardware user’s manual. HI can be A, B, E, or F, which
corresponds to interrupt levels 10, 11, 14, and 15 respectively. The default value is A (10).

DI - specifies the input DMA channel (the DMA channel number being used for the reporting
of A/D conversions and readings from the digital input port) selected for the DI-200 Series
instrument. The range for DI is 5 ≤ DI ≤ 7. Set DI = 0 to disable DMA input operations. The
default value is 6.

DO - specifies the output DMA channel (the DMA channel number being used to receive
analog output and digital output values) selected for the DI-200 Series instrument. The range
for DO is 5 ≤ DO ≤ 7. Set DO = 0 to disable DMA output operations. The default value is 7.
To avoid DMA channel conflicts, do not set DO equal to DI (DO ≠ DI).

LPT - specifies the printer (LPT) or parallel port number to which the instrument is connected.
The range for LPT is 1 (LPT1), 2 (LPT2), 3 (LPT3), or 4 (LPT4). The default value is 1
(LPT1).

Example 1: DI-200 180 A 6 0

The above command installs the DI-200 Series device driver and configures the driver for a
base address of 180H, a hardware interrupt level of A (10 decimal), and a DMA input channel
of 6. The DMA output channel has been disabled.

Example 2: DI-500 2

This command installs the DI-500 Series device driver on LPT 2.

Upon proper installation of the driver, a copyright notice will appear identifying the driver, its
version, and date.

Programmer’s SDK Manual

Getting Started
7

Error Messages: “DI-xxx device driver has already been installed”
“Invalid port address”
“Invalid hardware interrupt level”
“Invalid software interrupt level”
“Invalid DMA input channel number”
“Invalid DMA output channel number”
“Dataq Interrupt invalid or not found in environment space”
“Software interrupt already installed”

On-board DSP Program Installation

Form: 200LDR argument (For all DI-200 Series instruments except the DI-220, DI-221TC,
and the DI-222)

220LDR argument (For DI-220, DI-221TC, and DI-222 instruments)
400LDR argument (For DI-400 Series instruments)
500LDR argument (For DI-500 Series, DI-720, DI-730, and DI-5001 instruments)

Where: One space must separate argument from 200LDR, 220LDR, 400LDR, or 500LDR.

Argument specifies the name of the binary file containing the program for the device's on-
board DSP. Argument files are identified with a .BNM extension and, in most cases, have the
same name as the hardware (i.e., if you are using a DI-210 instrument, the argument file would
be DI-210.BNM). The following table shows the loader arguments that are available for each
batch file.

Batch File Available Arguments

DI200.BAT di-200.bnm
DI201M.BAT di-201m.bnm
DI210.BAT di-210.bnm
DI220.BAT di-220.bnm
DI221.BAT di-221.bnm
DI400.BAT di-400.bnm
DI500.BAT di-500.bnm
DI720.BAT di-720.bnm
DI730.BAT di-730.bnm

If you are experiencing a problem, consult the “readme” text file created during software
installation or contact Dataq Instruments technical support to find out which .BNM file to use.

Example 1: 200LDR DI-210.BNM

The above command down-loads the binary file DI-210.BNM containing the DSP program to
the DI-210 board.

Example 2: 400LDR DI-400.BNM

The above command down-loads the binary file DI-400.BNM containing the DSP program to
the DI-400 Series board.

Example 3: 500LDR 1 DI-720.BNM

The above command down-loads the binary file DI-720.BNM containing the DSP program to
the DI-720 instrument.

Programmer’s SDK Manual

General SDK Information
8

General SDK Information
Programmer’s SDK Data Types and Ranges
The Programmer’s SDK uses several data types defined as follows:

• Integer—a 16-bit signed value with a range of -32,768 to +32,767

• Unsigned integer—a 16-bit unsigned value with a range of 0 to 65,535

• Float—a 32-bit value using the IEEE single precision floating point format to represent numbers having a fractional
format

• Array— a sequential organization of similar data types, usually integer or floating point numbers. SDK functions
require the address of this type of argument (passed-by-reference).

• String—a sequence of ASCII characters terminated with a NULL byte. SDK functions require the address of this
type of argument (passed-by-reference).

• Structure—a sequential organization of related data, not necessarily having similar data types. SDK functions
require the address of this type of argument (passed-by-reference).

The following table lists the various data types described above and indicates the equivalent data type for each
supported language:

Data Type BASIC “C” Pascal
integer % int integer
unsigned integer* % unsigned int word
float ! float single
long & long longint
array DIM int [] array [1..10] of integer
string $ char[] or char* array [1..10] of char
structure type struct record

*Note that Quick BASIC does not support the unsigned integer data format. Unsigned integers in the range of
32,768 to 65,535 must use the negative signed integer whose representation is the same as its unsigned counterpart.
Use the following equation to convert between signed and unsigned equivalents:

signed equivalent = 32,768-(unsigned value)

Using INCLUDE Files
The Programmer’s SDK provides files 200SDKQ.BI and 200SDKV.BI which must be included in your program if
you are using Microsoft Quick BASIC or Visual BASIC for DOS respectively. These files provide definitions of all
constants, function prototypes, and structures used by the driver. For example, the Quick BASIC metacommand
syntax required to perform this inclusion is as follows:

REM $INCLUDE:'200SDKQ.BI'

or

'$INCLUDE:'200SDKQ.BI'

Programmer’s SDK Manual

General SDK Information
9

File “GLOBAL.BAS” (found in the \WIN\VB subdirectory) performs the same function for the Visual BASIC
environment, and must become part of your Visual BASIC program.

Microsoft C and Quick C users should note that the “.H” files contain similar equates and structure definitions and
must be included in your program. Use “200SDK.H” for all Windows™ and non-Windows™ programming.

Input and Output Data Buffer Management
Most instruments allow up to two data buffers to coexist. One may be designated as an input buffer, and the other an
output buffer (DI-401 and DI-700 instruments do not support output operations, therefore there is no output buffer).
When configured to do so, an instrument may simultaneously send and receive data to and from the buffers
(simultaneous input and output operations are not possible with DI-401 and DI-700 instruments). For example,
analog input operations may occur while analog output operations are being performed. This capability allows an
instrument to act not only as a data acquisition tool, but also as a stimulator.

Buffer Allocation
An input buffer (on DI-401 and DI-700 instruments) or both input and output buffers (on the rest of the instruments)
are allocated with the di_buffer_alloc command. When a buffer is allocated successfully, the di_buffer_alloc
command returns a far integer pointer which may be used by the issuing program to gain access to the buffer. A
NULL is returned if the allocation attempt failed because of insufficient memory.

Buffer Access
The buffer allocation command di_buffer_alloc returns a far integer pointer if the allocation was successful. This
pointer may be used directly if the programming language is C. For example, the following C program allocates a
buffer, then initializes it with a ramp function ranging from 0 to 1024:

All instruments except DI-401 and DI-700 (these instruments do not support output operations)
#include "200SDK.H"

int far *output_buffer;
int i;

main()
{

if((output_buffer=di_buffer_alloc(1,4096)==NULL){
printf("Insufficient memory or output buffer already allocated...\n");
exit(0);

}
for(i=0;i<1024;i++)

*(output_buffer+i)=i;
}

DI-401 and DI-700 Instruments
#include "200SDK.H"

int far *some_buffer;
int i;

main()
{

if((some_buffer=di_buffer_alloc(0,4096)==NULL){
printf("Insufficient memory or input buffer already allocated...\n");
exit(0);

}
for(i=0;i<1024;i++)

*(some_buffer+i)=i;
}

Programmer’s SDK Manual

General SDK Information
10

However, Quick BASIC or Visual BASIC cannot use pointers returned by di_buffer_alloc. For these languages,
two special functions are provided in the 200SDK library: di_copy_buffer for moving the contents of a buffer into
a BASIC array, and di_copy_array for writing the contents of a BASIC array to a buffer. They are used as follows:

All instruments except DI-401 and DI-700 (these instruments do not support output operations)
dim anlgout%[4096]
dim analgin%[4096]
NULL=val("")

in_buf&=di.buffer.alloc(0,4096)
IF in.buf&=NULL THEN PRINT "Insufficient memory":END

out.buf&=di.buffer.alloc(1,4096)
IF out.buf&=NULL THEN PRINT "Insufficient memory":END

'****Copy input buffer to BASIC array analgin%
i%=di.copy.buffer(0,analgin%(0),4096)
IF i%<>0 THEN PRINT "copy buffer function error"

'****Copy the contents of BASIC array analout% into the output buffer
i%=di.copy.array(0,anlgout%(0),4096)
IF i%<>0 THEN PRINT "copy array function error"

DI-401 and DI-700 Instruments
dim analgin%[4096]
NULL=val("")

in.buf&=di.buffer.alloc(0,4096)
IF in.buf&=NULL THEN PRINT "Insufficient memory":END

'****Copy input buffer to BASIC array analgin%
i%=di.copy.buffer(0,analgin%(0),4096)
IF i%<>0 THEN PRINT "copy buffer function error"

Input and Output Data Buffer Architecture
All instruments may write data to the input buffer from analog input signals or from the digital input port. Similarly,
data contained in the output buffer may be written to the DAC or to the digital output port on DI-200 Series
instruments; or to either DAC (DAC1 or DAC2) or to the digital output port on DI-400 Series, DI-500 Series, DI-
720, and DI-730 instruments (DI-401 and DI-700 instruments do not support output operations, therefore there is no
output buffer). The following describes the format of any word appearing in the input or output buffer. These data
word formats assume that only the SDK is running. If WINDAQ software is running in conjunction with the SDK,
Y1 and Y0 are undefined. Because DI-200 Series instruments have only one I/O port, both DMA data and control
information (i.e., commands, status, etc.) must share this single port. Therefore, in order to distinguish the word as
DMA data (as opposed to control information), the two LSB's of the data word must be zero:

Analog In Word
All 12-bit instruments (DI-200, DI-400, DI-401, and DI-500 Series) with signal averaging off, or DI-220, DI-

221TC, and DI-222 always (regardless of signal averaging).
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
MSB data data data data data data data data data data LSB 0 0 Y1* Y0*

D=indicated digital I/O line; *If you are looking at the first channel in the scan list, Y1 reflects the inverted
state of the remote start/stop flag and Y0 reflects the inverted state of the event marker flag. Otherwise, Y1
and Y0 are zero. If analog data is a unipolar signal, the number is a straight binary value. Bipolar signals
are in 2's complement format.

Programmer’s SDK Manual

General SDK Information
11

Analog In Word
All 12-bit instruments (DI-200, DI-400, DI-401, and DI-500 Series) with signal averaging on, or all 14-bit

instruments (DI-210, DI-410, DI-700, DI-720 and DI-730).
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
MSB data data data data data data data data data data data data LSB Y1* Y0*

D=indicated digital I/O line; *If you are looking at the first channel in the scan list, Y1 reflects the inverted
state of the remote start/stop flag and Y0 reflects the inverted state of the event marker flag. Otherwise, Y1
and Y0 are zero. If analog data is a unipolar signal, the number is a straight binary value. Bipolar signals
are in 2's complement format.

Analog In Word
All 16-bit instruments (DI-700, DI-720, and DI-730).

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
MSB data data data data data data data data data data data data data data LSB

D=indicated digital I/O line; If analog data is a unipolar signal, the number is a straight binary value.
Bipolar signals are in 2's complement format.

Analog Out Word
All instruments that have this capability (for example, all except the DI-401 and DI-700).

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
MSB data data data data data data data data data data LSB R R 0 0

D=indicated digital I/O line; If analog data is a unipolar signal, the number is a straight binary value.
Bipolar signals are in 2's complement format. R=reserved.

Digital In Word
All instruments.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0 X X X X X X Y1* Y0*

D=indicated digital I/O line; X=don’t care; *If you are looking at the first channel in the scan list, Y1
reflects the inverted state of the remote start/stop flag and Y0 reflects the inverted state of the event marker
flag. Otherwise, Y1 and Y0 are zero.

Digital Out Word
All instruments.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0 X X X X X X 0 0

D=indicated digital I/O line; X=don’t care;

A/D Coding

A/D Input Coding
A/D Output (Hex)**

12-bit 14-bit 16-bit
+FS

1/2FS
0

Unipolar*
7FF0 7FFC 7FFF

0 0 0
-8000 -8000 -8000

+FS
0

-FS
Bipolar

7FF0 7FFC 7FFF
0 0 0

-8000 -8000 -8000

FS = full scale; *DI-221TC, DI-400 Series, DI-500 Series, DI-700, DI-
720, DI-730, and DI-5001 instruments do not support unipolar
operation. **All data is left-justified, with extraneous bits (if any) equal
to zero.

Programmer’s SDK Manual

General SDK Information
12

Converting Counts to Volts
Data is returned from the instrument in the form of A/D converter counts. These counts may be converted to volts
for all instruments as follows:

() ()
2

VV

65536.0
VV

 CountVolts
minmaxminmax ++

 −×=

where: Count is a signed integer value returned from the instrument. All bits after the LSB should be zero.
Vmax is the maximum input voltage accepted at the selected gain.
Vmin is the minimum input voltage accepted at the selected gain.

Note that Vmax , Vmin , and gain factor vary by instrument. The following tables list each value of Vmax and Vmin by
instrument and gain factor:

Programmer’s SDK Manual

General SDK Information
13

Unipolar Mode Bipolar Mode
Instrument Gain Vmax Vmin Vmax Vmin

1 10 0 +10 -10
2 5 0 +5 -5
4 2.5 0 +2.5 -2.5

DI-200, DI-210* 8 1.25 0 +1.25 -1.25
& DI-222 10 1 0 +1 -1

100 0.1 0 +0.1 -0.1
1,000 0.01 0 +0.01 -0.01

1 5 0 +5 -5
2 2.5 0 +2.5 -2.5
4 1.25 0 +1.25 -1.25

DI-201 & DI-220 8 0.625 0 +0.625 -0.625
10 0.5 0 +0.5 -0.5

100 0.05 0 +0.05 -0.05
1,000 0.005 0 +0.005 -0.005

1 +5 -5
DI-221TC 10 +0.5 -0.5

100 +0.05 -0.05
1,000 +0.005 -0.005

1 +10 -10
2 +5 -5

DI-400 & DI-410* 4 +2.5 -2.5
8 +1.25 -1.25

10 +1 -1
100 +0.1 -0.1

DI-401 1 +5 -5
1 +10 -10

DI-700 10 +1 -1
100 +0.1 -0.1

1,000 +0.01 -0.01
1 +10 -10

DI-720 2 +5 -5
4 +2.5 -2.5
8 +1.25 -1.25
1 +1,000 -1,000

10 +100 -100
DI-730 100 +10 -10

1,000 +1 -1
10,000 +0.1 -0.1

100,000 +0.01 -0.01
1 +5 or +10 -5 or -10

DI-5001** 2 +2.5 or +5 -2.5 or –5
4 +1.25 or +2.5 -1.25 or –2.5
8 +0.625 or +1.25 -0.625 or –1.25

*DI-210 and DI-410 instruments only support gains of 1, 2, 4, and 8.
**DI-5001 instruments have a jumper-selectable input range feature that allows them to be

configured for either ±5 volts full scale or ±10 volts full scale.

Programmer’s SDK Manual

General SDK Information
14

Instrument Gain
Bipolar Mode

Vmax Vmin

DI-500-16, 1 +5 -5
DI-510-32, 2 +2.5 -2.5

DI-510-32 Expander, and 4 +1.25 -1.25

All DI-500 Series
instruments with

signal conditioned
inputs, such as: Channels 1 thru 16 on the DI-510-48 8 +0.625 -0.625

DI-500-32, 1 +10 -10
DI-500-32 Expander, 2 +5 -5

DI-510-64, DI-510-64 Expander, and 4 +2.5 -2.5

All DI-500 Series
instruments with
high level inputs,

such as: Channels A1 thru A32 on the DI-510-48 8 +1.25 -1.25

Refer to the following examples:

Example 1: Say we are using a DI-200 board, configured for a gain of 1, operating in bipolar mode. From the
chart, Vmax = +10V and Vmin = -10V. Plugging these values into the above equation:

()() ()()

65536
20

 Count

2
10- 10

65536

10- - 10
 CountVolts

×=

++

 ×=

Example 2: Say we are using a DI-200 board, configured for a gain of 1, operating in unipolar mode. From the
chart, Vmax = 10V and Vmin = 0V. Plugging these values into the above equation:

() ()

5
65536

10
 Count

2
0 10

65536

0 - 10
 CountVolts

+

 ×=

++

 ×=

Example 3: Say we are using a DI-200 board, configured for a gain of 2, operating in bipolar mode. From the
chart, Vmax = +5V and Vmin = -5V. Plugging these values into the above equation:

()() ()()

65536
10

 Count

2
5- 5

65536

5- - 5
 CountVolts

×=

++

 ×=

For DI-500 Series instruments, this equation converts the data returned into volts, just like any other instrument. If
you have a DI-500 Series instrument with high level inputs (i.e., DI-500-32, DI-500-32 expander, DI-510-64, DI-
510-64 expander, or channels A1 through A32 of the DI-510-48), this equation can be used to convert the returned
data into volts. However, if you have a DI-500 Series instrument with signal conditioned inputs (i.e., DI-500-16, DI-
510-32, DI-510-32 expander, or channels 1 through 16 of the DI-510-48), an additional calculation must be made to
convert volts to whatever meaningful units the DI-5B module is measuring.

Sampling Different Channels at Different Rates
Except for DI-300 Series instruments, all of our instruments have the unique capability of allowing analog and
digital I/O data to be written or acquired at a different rate per channel. This feature is possible through the use of a
counter attached to each input and output scan list element (a total of 272 counters exist). The number loaded into
the counter defines the rate at which that scan element will read or write data according to the following equation:

Programmer’s SDK Manual

General SDK Information
15

S =
B

L C +1()

Where: S = desired sampling rate of the input list entry, B = burst rate of the instrument, L = length of the input or
output list (whichever is greater), and C = “count weight” or input counter list entry (the value represented by i in
the command format).

The effect of counter values on the placement of data in the input and output buffers is significant, and deserves
special treatment. We will examine the use of data buffers in this special case by applying several examples of
analog input operations at varying rates per channel.

To keep the examples manageable, we will set the burst rate at 1000 samples per second, and fix the length of the
scan list to four elements. In practice, you would want to set the burst rate as high as possible to minimize time skew
between channels. Setting a lower burst rate for the sake of the example, however, allows a small change in the
counter value to translate into a large change in sample rate. The length of the input buffer will also be fixed at
twenty samples.

We will look at three examples: The first will set the counter value to zero for all four channels; the second will
apply the same, but non-zero counter value to all channels; the third will apply a different counter value per channel.

All Counter Values Equal Zero
This is the most common operating mode of data acquisition products where the sample throughput rate of the
instrument is divided equally among the enabled channels. In our example of a burst rate of 1000Hz and four
enabled channels, each channel is sampled at a rate of 250Hz.

Channel Number Counter Value Sample Rate (Hz)
0 0 250
1 0 250
2 0 250
3 0 250

When executed, A/D values will appear in the input buffer in the order of lowest to highest as follows:

Input Buffer
Position

Acquired
Channel #

Input Buffer
Position

Acquired
Channel #

0 0 10 2
1 1 11 3
2 2 12 0
3 3 13 1
4 0 14 2
5 1 15 3
6 2 16 0
7 3 17 1
8 0 18 2
9 1 19 3

All instruments sample A/D data in the burst mode of operation. In the example we’ve defined above, five bursts of
A/D conversions result in a total of twenty samples delivered to the input buffer as follows:

Programmer’s SDK Manual

General SDK Information
16

Burst Number
Channel Number

0 1 2 3
1 • • • •
2 • • • •
3 • • • •
4 • • • •
5 • • • •

• means the indicated channel number was acquired during the burst

Counter Values Equal, but Non-Zero
Adjusting counter values to equal but non-zero values has the effect of simply adjusting the sample rate at which the
analog data is acquired. For example, setting the counter value to three has the following effect on sample rates…

Channel Number Counter Value Sample Rate (Hz)
0 3 62.5
1 3 62.5
2 3 62.5
3 3 62.5

…but does not affect the order in which channel data is stored in the input buffer:

Input Buffer
Position

Acquired
Channel #

Input Buffer
Position

Acquired
Channel #

0 0 10 2
1 1 11 3
2 2 12 0
3 3 13 1
4 0 14 2
5 1 15 3
6 2 16 0
7 3 17 1
8 0 18 2
9 1 19 3

However, looking at how the data is acquired in relation to the burst number shows a clearly slower sample rate.
The burst rate is fixed at 1000Hz and the counters are decremented at that rate. When a counter passes through zero,
a sample is acquired for that channel, the counter is reset to its initial value (3 in this example), and data acquisition
resumes. Since the counters for all channels are set to the same value, sampling occurs for each on the same burst
number.

Programmer’s SDK Manual

General SDK Information
17

Burst Number
Channel Number

0 1 2 3
1
2
3
4 • • • •
5
6
7
8 • • • •
9

10
11
12 • • • •
13
14
15
16 • • • •
17
18
19
20 • • • •

• means the indicated channel number was acquired during the burst

Different Counter Values
So far, there has been little differentiation from other alternative products regarding sample rate selection. But with
the ability to apply a different count value per element, the sample rate of each channel may vary. This adds
significant flexibility to your data acquisition tasks. Selecting a count value of 0, 1, 2, and 3 to channels 0 through 3
respectively yields the following sample rates per channel:

Channel Number Counter Value Sample Rate (Hz)
0 0 250
1 1 125
2 2 83.33
3 3 62.5

When acquired, the order of channels appearing in our 20-sample input buffer is as follows:

Input Buffer
Position

Acquired
Channel #

Input Buffer
Position

Acquired
Channel #

0 0 10 1
1 0 11 2
2 1 12 0
3 0 13 0
4 2 14 1
5 0 15 3
6 1 16 0
7 3 17 2
8 0 18 0
9 0 19 1

Programmer’s SDK Manual

General SDK Information
18

When broken down by burst sample number, the following scan order is revealed. Clearly demonstrating the
varying sample rates per acquired channel:

Burst Number
Channel Number

0 1 2 3
1 •
2 • •
3 • •
4 • • •
5 •
6 • • •
7 •
8 • • •
9 • •

10 • •

• means the indicated channel number was acquired during the burst

Note also by examining the above table that the number of burst numbers separating each acquisition of a particular
channel is constant. This means that each sample of any channel occurs at a precise and predictable moment in time.

How Data is Received From an Input Buffer
The following flow chart illustrates how data is received from an input data buffer (all instruments):

Get counter values for
channels acquired to

input buffer

Decrement all
counters

Any counter=-1?
N

Get channel data from
input buffer for all

counter values of -1

Reset -1 counter values
to initial values

Programmer’s SDK Manual

Function Reference
19

Function Reference
Programmer’s SDK Functions
Each function may be classified into one of the following categories:

• Initialization and Information functions
• Buffer functions
• Immediate functions (one-shot, single data value)
• Scanning functions (collecting multiple data values)
• Counter/timer functions
• Miscellaneous functions

Hardware Support for Programmer’s SDK Functions
A checkmark indicates the function is supported by the instrument:

Instrument

Function
DI-200,
DI-201,
DI-210

DI-220
DI-222

DI-221TC DI-401 DI-400
DI-410

DI-500 DI-510 DI-700
DI-720
DI-730

DI-5001
di_anin ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

di_anout ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_buffer_alloc ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_buffer_free ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_buffer_size ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

di_buffer_status ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_burst_rate ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

di_close ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_copy_array ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_copy_buffer ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

di_copy_header ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_copy_mux ✔ ✔ ✔ ✔
di_ct_event ✔ ✔ ✔

di_ct_one_shot ✔ ✔ ✔
di_ct_status ✔ ✔ ✔
di_ct_stop ✔ ✔ ✔
di_ct_wave ✔ ✔ ✔

di_digin ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_digout ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

di_get_acq_header ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_info ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_inlist ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔* ✔

di_list_length ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_mode ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_open ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_outlist ✔ ✔ ✔ ✔ ✔ ✔ ✔

di_set_data_mode ✔
di_start_scan ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

di_status_read ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_stop_scan ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

di_strerr ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
di_trigger_status ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

*only partially supported.

Programmer’s SDK Manual

Function Reference
20

Initialization and Information Functions
Use these functions for initializing communications with your hardware:

• di_close Closes communications with your instrument and frees all opened buffers.

• di_copy_mux Describes each bank of 16 channels on DI-400, DI-500 Series, DI-720, and DI-730
instruments.

• di_info Returns instrument-specific information such as base address, interrupt levels, revision
levels, etc.

• di_open Opens communications with your instrument.

Buffer Functions
Use these functions for manipulating input or output data buffers:

• di_buffer_alloc Allocates buffer memory.

• di_buffer_free Frees buffer memory.

• di_buffer_size Returns the size of the input buffer to determine the proper index.

• di_buffer_status Returns the position of the next entry into the input or output data buffer.

• di_copy_array Copies the contents of a BASIC array into the output buffer.

• di_copy_buffer Copies the contents of the input buffer into a BASIC array.

• di_status_read Reads the status of the input buffer and copies the newest data (collected since a
previous call) to a specified destination.

Immediate Functions
Use these functions for one-shot, single data value operations:

• di_anin Reads an analog input channel and returns the value.

• di_anout Writes a binary value to the DAC.

• di_digin Reads a byte from the digital input port and returns the value.

• di_digout Writes a byte to the digital output port.

Scanning Functions
Use these functions for collecting multiple data values:

• di_burst_rate Sets the burst rate.

• di_inlist Initializes the input scan list.

• di_list_length Sets input and output scan list lengths.

Programmer’s SDK Manual

Function Reference
21

• di_mode Initializes the instrument for triggering and sets the triggering mode.

• di_outlist Initializes the output scan list.

• di_start_scan Initiates a multiple-channel data acquisition scanning operation.

• di_stop_scan Stops the data acquisition scanning operation.

• di_trigger_status Returns the trigger status.

Counter/Timer Functions
Use these functions to perform timing I/O and counter operations:

• di_ct_event Starts event counting using the digital input bits.

• di_ct_one_shot Generates a one-shot function according to the parameters passed to it.

• di_ct_status Returns the present count of the event counter.

• di_ct_stop Stops event counting.

• di_ct_wave Generates a square wave according to the parameters passed to it.

Miscellaneous Functions
Use these functions to perform miscellaneous operations:

• di_copy_header Copies CODAS header information into a BASIC structure.

• di_get_acq_header Returns either a far pointer to the CODAS header structure or null if the structure is
not available.

• di_set_data_mode DI-700 Only. Chooses between 14- and 16-bit measurement resolution.

• di_strerr Maps an error code to an error message.

Equivalent HP VEE Functions
The HP VEE function library contains functions that accomplish the same result as SDK functions but aren’t
precisely named the same way as the SDK functions and therefore may not be intuitively obvious. The following
chart should remove all doubt regarding the SDK functions and their HP VEE equivalents.

Programmer’s SDK Manual

Function Reference
22

HP VEE Function SDK Equivalent:
DiAnIn di_anin

DiAnOut di_anout
DiBufAlloc di_buffer_alloc
DiBufFree di_buffer_free
DiBufSize di_buffer_size

DiBufStatus di_buffer_status
DiBurstRate di_burst_rate

DiClose di_close
DiCopyArray di_copy_array
DiCopyBuffer di_copy_buffer

DiCopyHeader di_copy_header
DiCopyMux di_copy_mux
DiCtEvent di_ct_event

DiCtOneShot di_ct_one_shot
DiCtStatus di_ct_status
DiCtStop di_ct_stop
DiCtWave di_ct_wave

DiDigIn di_digin
DiDigOut di_digout

DiGetAcqHeader di_get_acq_header
DiInfoBoardID di_info
DiInfoDspVer di_info

DiInfoGain di_info
DiInfoHdrLvl di_info

DiInfoHrdwrRev di_info
DiInfoInBufSize di_info
DiInfoInChan di_info

DiInfoLastCalDate di_info
DiInfoOutBufSize di_info
DiInfoOutChan di_info
DiInfoPal0Rev di_info
DiInfoPal1Rev di_info

DiInfoPort di_info
DiInfoSDKVer di_info
DiInfoSerialNo di_info

DiInfoSftLvl di_info
DiInfoTsrVer di_info

DiInList di_inlist
DiListLength di_list_length

DiMode di_mode
DiOpen di_open

DiOutList di_outlist
DiSetDataMode di_set_data_mode

DiStartScan di_start_scan
DiStatusRead di_status_read
DiStopScan di_stop_scan

DiStrErr di_strerr
DiTriggerStatus di_trigger_status

Programmer’s SDK Manual

Function Reference
23

Programming Sequences and Flow Charts
The programming sequences in this manual are provided in flow chart format. Each flow chart illustrates a typical
sequence of function calls needed to achieve the following operations:

• Single value analog input and analog output
• Multiple value analog input and/or digital I/O
• Multiple value analog output and/or digital output
• Multiple value simultaneous analog I/O and digital I/O
• Single value digital input and digital output
• Counter/Timer—event counting and one-shot generation
• Counter/Timer—output square wave generation

Analog I/O—Single-value Analog Input and Analog Output (Analog Output not available on DI-401 and DI-
700 Instruments)

*Analog output not
available on DI-401 or
DI-700 instruments

Output analog
value to the DAC
specifying
uni/bipolar range
(DI-200 Series
instruments) or
specifying
DAC1/DAC2 (all
others except DI-
200 Series)

Programmer’s SDK Manual

Function Reference
24

Analog I/O—Multiple-value Analog Input and/or Digital Input

Open device
communications di_open

Get device and buffer
information di_info

Define input scan list
length di_list_length

Specify burst rate
di_burst_rate

Allocate analog input
buffer di_buffer_alloc

Get input buffer
position di_buffer_status

half of
buffer
filled?

N

read input buffer

continue
scanning?

di_stop_scan

di_buffer_free

di_close

Y

Get input buffer
contents

Disable input
scanning

Release input
buffer memory

Terminate device
communication

Begin acquisition
di_start_scan

1

1

Define continuous or
triggered scan mode di_mode

Create a channel
scan input list di_inlist

Programmer’s SDK Manual

Function Reference
25

Analog I/O—Multiple-value Analog Output (Analog Output not available on DI-401 and DI-700 Instruments)
and/or Digital Output

Programmer’s SDK Manual

Function Reference
26

Analog I/O—Multiple Value, Simultaneous Analog I/O (Analog Output not available on DI-401 and DI-700
Instruments) and Digital I/O

Programmer’s SDK Manual

Function Reference
27

Digital I/O—Single-value Digital Input and Digital Output

Open device
communications di_open

Read digital
input port di_digin

more digital
data?

Y

di_close
Terminate
device
communication

Digital input

Open device
communicationsdi_open

Output digital byte
di_digout

more digital
data?

Y

di_close
Terminate device
communication

Digital output

Programmer’s SDK Manual

Function Reference
28

Counter/Timer—Event Counting and One-shot Generation (Counter/Timer functions not available on DI-
400 Series, DI-500 Series, DI-700, DI-720, DI-730 or DI-5001 Instruments)

Open device
communications di_open

Counter

Begin event
counting di_ct_event

Get current
count di_ct_status

continue
counting?

N

di_ct_stop

di_close

Y

Disable counting

Terminate device
communication

Open device
communicationsdi_open

One-shot generator

Configure one-shot
parametersdi_ct_one_shot

continue?

N

di_ct_stop

di_close

Y

Disable one-shot

Terminate device
communication

Programmer’s SDK Manual

Function Reference
29

Counter/Timer—Output Square Wave Generation (Counter/Timer functions not available on DI-400 Series,
DI-500 Series, DI-700, DI-720, DI-730 or DI-5001 Instruments)

Function Reference
The remainder of this chapter is an alphabetically arranged listing of each function in the SDK.

Programmer’s SDK Manual

Function Reference
30

di_anin
(not available on DI-700 instruments)

• Summary

int di_anin(analog_input);

struct di_anin_struct{
unsigned chan; /* input channel. 0 to 255 */
unsigned diff; /* input configuration (single-ended or diff) */
unsigned gain; /* gain. 0 to 3 */
unsigned unipolar; /* unipolar/bipolar; 0=bipolar, 1=unipolar */
}*analog_input;

• Description

di_anin is an immediate function that inputs data from an analog input channel. On DI-200
and DI-210 instruments, this function should not be issued while an input, output, or
simultaneous input and output scanning operation is in progress. If it is, the scanning
operation will halt. On all other instruments, scanning will not halt when this function is
issued, but di_anin will only execute successfully while output scanning (the di_anin
function will be ignored when input scanning or simultaneously input and output scanning).
Each element in the structure is defined as follows:

chan allows you to specify the input channel you wish to sample. Values for chan can range
from 0 to 255, according to the following equations:

DI-200, DI-201, DI-210, DI-220, DI-221TC, and DI-222

With 16 channels or less: chan = channel#

With more than 16 channels:

chan = channel# mod 16 + 16(output channel + 1)

channel# is the analog input channel on the EXP board you wish to sample.
output channel is the position of the jumper on the EXP board. On hardware
with more than 16 channels, the mod operator in the equation above combines two
integer expressions using modulo arithmetic. For two integer values, modulo
arithmetic returns only the remainder from an integer division. That is, 6 mod 4 is
2, the remainder of the integer division of 6 by 4. For example, let’s say we have
three 32-channel EXP boards multiplexed to a DI-200 Series board and we want
to record analog input channel five on the third EXP board. What channel do we
specify for chan ?

Programmer’s SDK Manual

Function Reference
31

+ - G + - G + - G + - G
4 5 6 7

+ - G + - G + - G + - G

0 1 2 3

EXP Series Board

Input signal
connected here (#5)

OUTPUT CHANNEL
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••

0 1 234567 8
9
10

11
12

13
14

15

EXP inputs 0 - 15 are MUXed into
output channel 4, which is analog
input 4 on the DI-200 Series board

On each EXP board, each bank of 16 analog inputs is multiplexed into one output
(specified by the position of the OUTPUT CHANNEL jumper on the EXP board).
This output from the EXP board is connected to an internal analog input on the
DI-200 Series board. Assuming the first EXP board uses output channels 0 and 1
and the second EXP board uses outputs 2 and 3, the third EXP board will
multiplex inputs 0 through 15 into output channel 4 and inputs 16 through 31 into
output channel 5. From the equation:

chan = (channel#) mod 16 + 16(output channel +1)

chan = (5) mod 16 + 16(4 + 1)
chan = 5 + 80
chan = 85

Now suppose we want to record channel 23 on the third EXP board. What channel
do we specify for chan in this case?

chan = (channel#) mod 16 + 16(output channel +1)

chan = (23) mod 16 + 16(5 + 1)
chan = 7 + 96
chan = 103

Finally, suppose we have just one DI-200 Series board (not multiplexed) and we
want to record channel 6. What channel do we specify for chan ? Since we are
using non-multiplexed hardware (only 16 channels), the first equation applies:

chan = channel#
chan = 6

Programmer’s SDK Manual

Function Reference
32

DI-400, DI-401, DI-410, DI-500, DI-510, DI-720, DI-730, and DI-5001

With 16 channels or less: chan = (channel# - 1)

With more than 16 channels:

chan = (channel# - 1) + 32(mux letter - ‘A’ + 1)

channel# is the analog input channel you wish to sample. On instruments with
more than 16 channels, mux letter is the letter you assigned to the instrument
(written on the overlay) during installation and initial configuration. This letter is
important for keeping track of all the analog input channels on your instrument(s).
For example, let’s say we have three DI-500-32-P instruments multiplexed
together and we want to record analog input channel five on the third instrument.
What channel do we specify for chan ? During installation, you would have
labeled the instruments “A”, “B”, and “C”. From the equation:

chan = (channel# - 1) + 32(mux letter - ‘A’ + 1)

chan = (5 - 1) + 32(C - A + 1)
chan = 4 + 32(2 + 1)
chan = 4 + 96
chan = 100

diff allows you to specify whether the channel specified by chan is single-ended or
differential as follows:

DI-200, DI-201, DI-210, DI-220, DI-221TC, DI-222, DI-400, DI-410, DI-720,
and DI-5001
diff = 0 for single ended input configuration.
diff = 1 for differential input configuration (do not set diff = 1 for channels on
multiplexers, even though the inputs are differential).

DI-401
reserved for compatibility.

DI-500 and DI-510
diff = 0 for single ended input configuration.
diff = 1 for differential input configuration. This configuration allows you to see
the difference between 2 differential input channels, but only on chan 1 through 8
and 17 through 24 of DI-500-16 and DI-510-48 instruments. When chan 1
through 8 or 17 through 24 is specified for differential operation, the other
channel that creates the differential pair is automatically selected, eight channels
away. For example, if chan 1 is configured for differential operation, chan 9
becomes the companion channel, similarly with 2 and 10, 8 and 16, 18 and 26,
etc. In every case, the lowest channel number becomes the positive (+) differential

Programmer’s SDK Manual

Function Reference
33

input and the automatically selected channel becomes the negative (-) differential
input.

DI-730
diff = 0 always. DI-730 instruments are always differential.

gain allows you to specify a gain factor (assigned to a code, from the following table) for the
channel specified by chan . With the DI-221TC, you can specify a gain factor for linear or
non-linear inputs. Note that this structure element is reserved for compatibility on DI-401
instruments (gain is fixed at 1):

Code

DI-200PGH,
DI-201PGH,

DI-210,
DI-220PGH,
DI-222PGH,
DI-400PGH,

DI-410,
DI-500PGH,
DI-510PGH,

DI-720,
DI-5001

DI-200PGL,
DI-201PGL,
DI-220PGL,
DI-222PGL,
DI-500PGL,
DI-510PGL

DI-400PGL DI-221TC Only DI-730

Gain Gain Gain Gain Input Type Gain

0 1 1 1 1 100 (10Vfs)
1 2 10 10 10 Linear 1,000 (1Vfs)
2 4 100 100 100 10,000 (0.1Vfs)
3 8 1,000 1,000 100,000 (0.01Vfs)
4* 1 1 (1,000Vfs)
5* 10 Non-linear 0† 10 (100Vfs)
6‡ 100
7‡ 1,000
8* 1
9* 10 Non-linear 1†
10 100
11 1,000
12* 1
13* 10 Non-linear 2†
14 100
15 1,000
16 Reserved Reserved
17 CJC †

*Gain codes 4, 5, 8, 9, 12, and 13 are undefined when making thermocouple measurements.

Vfs = volts full scale.

†If you are specifying a gain code from non-linear input groups 0, 1, or 2 and you are measuring
with a thermocouple, you must add an additional channel to the input scan list. This additional

Programmer’s SDK Manual

Function Reference
34

channel must specify cold junction compensation (code 17) as the gain element and it should be
placed last in the input scan list.

Thermocouple type is defined by the value of the unsigned chan
variable of the last scan list element containing gain code 17:

unsigned chan
value TC type

Multiplier for
gain of 100

Multiplier for
gain of 1000

0 K 1232.3333 121.9772
1 J 760 94.94897
2 T 400 115.2563
3 R 1768 548.1296

‡The A/D converter delivers “counts” as an end result instead of degrees.
These counts can be scaled to °C as follows:

()x
multiplier C

32768

 × =°

where x = ADC counts as delivered by the hardware, and multiplier is
from the table above. Make sure you use the appropriate multiplier for the
selected gain.

unipolar allows you to specify whether the channel specified by chan is a unipolar or
bipolar signal. On DI-401 instruments, this structure element is reserved for compatibility.
On DI-400, DI-410, DI-500, DI-510, DI-720, DI-730, and DI-5001 instruments, unipolar
configuration is not supported. Therefore on these instruments, unipolar must be 0 .

• Return Value

The function returns the analog input value as a left justified, 12-bit number (all instruments
except DI-210, DI-410, DI-720, DI-730, and DI-5001), as a left justified, 14-bit number (DI-
210, DI-410, DI-720, DI-730, and DI-5001), or as a left justified, 16-bit number (DI-720, DI-
730, and DI-5001 only).

• Dependencies

di_open

• Example

#include "200sdk.h"

int errcode;
struct di_anin_struct anin;
char errstr[255];

main()

Programmer’s SDK Manual

Function Reference
35

{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");
anin.chan = 5; /* channel 5 */
anin.diff = 0; /* single ended input channel */
anin.gain = 0; /* gain of 1 */
anin.unipolar = 0; /* bipolar */
i = di_anin(&anin)) /* get analog input */
printf("Channel 5 = %d",i);
di_close ();

}

di_anout
(not available on DI-401 and DI-700 instruments)

• Summary

int di_anout(dac_data,range)

unsigned dac_data; /* value to output to the DAC */
unsigned range; /* range (as follows):

DI-200, DI-201,
DI-210, DI-220,

DI-221TC, and DI-222

0 = bipolar
1 = unipolar

DI-400, DI-410, DI-500, DI-
510, DI-720, DI-730, and DI-

5001

0 = DAC1
1 = DAC2 */

• Description

di_anout is an immediate function that writes (outputs) a 2's complement, left justified value
to the DAC. The value that gets written to the DAC is resolution/instrument dependent as
follows:

12-bit — all instruments except DI-210, DI-410, DI-720, DI-730, and DI-5001.
14-bit — DI-210, DI-410, DI-720, DI-730, and DI-5001.
16-bit — DI-720, DI-730, and DI-5001 only.

Only DI-200, DI-201, DI-210, DI-220, DI-221TC, and DI-222 instruments support unipolar
operation. Therefore on all other instruments, range specifies which DAC to write to.

Programmer’s SDK Manual

Function Reference
36

DI-200 and DI-222 Only

Value (in Hex)
range = 0

(bipolar)
range = 1
(unipolar)

8000 -10 0
0000 0 5.00
7FF0 +9.9951 +9.9976

DI-210 Only

Value (in Hex)
range = 0

(bipolar)
range = 1
(unipolar)

8000 -10 0
0000 0 5.00
7FFC +9.9988 +9.9988

DI-201, DI-220, and DI-221TC*

Value (in Hex)
range = 0

(bipolar)
range = 1
(unipolar) *

8000 -5 0
0000 0 2.50
7FF0 +4.9976 +4.9988

*unipolar mode not supported on DI-221TC instruments

DI-400, DI-500 Series, DI-720, DI-730, and DI-5001
Value (in Hex) Bipolar only

8000 -10
0000 0
7FF0 +9.9976

DI-410 Only
Value (in Hex) Bipolar only

8000 -10
0000 0
7FFC +9.9988

On DI-200 and DI-210 instruments, this function should not be issued while an input, output,
or simultaneous input and output scanning operation is in progress. If it is, the scanning
operation will halt. On all other instruments, scanning will not halt when this function is
issued, but di_anout will only execute successfully while input scanning (the di_anout
function will be ignored when output scanning or simultaneously input and output scanning).

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_ANOUT_ERR Analog output error

Programmer’s SDK Manual

Function Reference
37

• Dependencies

di_open

• Example

#include "200sdk.h"

int i;
char errstr[255];

main()
{

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");
i = 5 ∗ 16; /* this left justifies the data */
i = i & 0XFFFC; /* the lower 2 bits should be zero */
if(errcode = di_anout(i,0)){ /* output i to DAC */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Analog output successful.....\n");
di_close ();

}

di_buffer_alloc

• Summary

int _huge *di_buffer_alloc(chn,size);

unsigned chn; /* 0 = input channel or 1 = output channel (output
functions not available on DI-401 and DI-700
instruments) */

unsigned size; /* words to allocate for buffer */

• Description

The di_buffer_alloc function allocates a memory block of at least size words (1 word = 1
sample). The memory is assigned to input if chn = 0 or to output if chn = 1 (output functions
are not available on DI-401 and DI-700 instruments). The LSB of chn is the only bit checked

Programmer’s SDK Manual

Function Reference
38

to determine input or output (output functions are not available on DI-401 and DI-700
instruments). Minimum buffer sizes (in words) are as follows:

If allocating an input and an output buffer:
Instrument: If allocating only one buffer: Input buffer Output buffer

DI-400 Series 15,000 8,192 6,144
DI-500 Series, DI-

700, DI-720, DI-730,
and DI-5001

7,500 4,096 3,072

All others 8,182 4,091 4,091

• Return Value

The di_buffer_alloc function returns a huge integer pointer if it can allocate memory of size

and if a buffer has not been previously allocated for chn . NULL is returned if allocation fails.

• Dependencies

di_open
di_inlist or di_outlist (output functions not available on DI-401 and DI-700 instruments)

• Example

#include "200sdk.h"

int *input_buffer;

int *output_buffer; (output functions not available on DI-401 and DI-700 instruments)

main()
{

di_open ();
if((input_buffer = di_buffer_alloc(0,4096)) == NULL) /* allocate

input buffer */
printf("Insufficient memory or input buffer already allocated...\n");

NOTE: output functions not available on DI-401 and DI-700 instruments
if((output_buffer = di_buffer_alloc(1,4096)) == NULL) /* allocate

output buffer*/
printf("Insufficient memory or output buffer already allocated...\n");

di_close ();

}

di_buffer_free

Programmer’s SDK Manual

Function Reference
39

• Summary

int di_buffer_free(chn);

unsigned chn; /* 0 = input channel or 1 = output channel (output
functions not available on DI-401 and DI-700
instruments) */

• Description

The di_buffer_free function deallocates a memory block. The memory block was previously
allocated by di_buffer_alloc. The LSB of chn is the only bit checked to determine input or
output (output functions are not available on DI-401 and DI-700 instruments, therefore no bit
is checked on these instruments).

• Return Value

DI_NO_ERR

• Dependencies

di_open
di_inlist or di_outlist (output functions not available on DI-401 and DI-700 instruments)
di_buffer_alloc
di_start_scan
di_buffer_status
di_stop_scan

• Example

#include "200sdk.h"

int *input_buffer;

int *output_buffer; (output functions not available on DI-401 and DI-700
instruments)

main()
{

di_open ();
if((input_buffer = di_buffer_alloc(0,4096)) == NULL) /* allocate input

buffer */
printf("Insufficient memory or input buffer already allocated...\n");

NOTE: output functions not available on DI-401 and DI-700 instruments)

Programmer’s SDK Manual

Function Reference
40

if((output_buffer = di_buffer_alloc(1,4096)) == NULL) /* allocate output
buffer*/

printf("Insufficient memory or output buffer already allocated...\n");
di_buffer_free(0) ; /* free input buffer */
di_buffer_free(1) ; /* free output buffer */
di_close ();

}

di_buffer_size

• Summary

unsigned di_buffer_size(void);

• Description

The di_buffer_size function returns the size of the input buffer. This function is used to get
the size of the input buffer, when the buffer is allocated by WINDAQ software. The size of the
buffer is needed to determine the proper index for use with the di_copy_buffer function.

• Return Value

The di_buffer_size function returns an unsigned integer equal to the size of the input buffer.

• Dependencies

none

• Example (Basic code)

buffer_size = di_buffer_size() ‘get size of buffer
buffer_pointer = di_buffer_status(0) – 100 ‘get the last 100 data points
If buffer_pointer < 0 Then ‘check for wrap around

buffer_pointer = buffer_size + buffer_pointer ‘adjust pointer if
wrap around

End If
i% = di_copy_buffer(buffer_pointer, inbuffer(0), 100) ‘copy buffer to

user array

Programmer’s SDK Manual

Function Reference
41

di_buffer_status

• Summary

unsigned di_buffer_status(chn);

unsigned chn; /* 0 = input channel or 1 = output channel (output
functions not available on DI-401 and DI-700
instruments) */

• Description

The di_buffer_status function gets the position of the next entry into the buffer. The position is
for an input if chn = 0 or an output if chn = 1 (output functions are not available on DI-401 and
DI-700 instruments). The LSB of chn is the only bit checked to determine input or output
(output functions are not available on DI-401 and DI-700 instruments, therefore no bit is
checked on these instruments). The size of the input or output buffer should be evenly divisible
by the length of the scan list in order to use the pointer as a buffer index (or starting position of the
next scan).

• Return Value

The di_buffer_status function returns an unsigned integer.

• Dependencies

di_open
di_buffer_alloc
di_list_length
di_start_scan
di_inlist or di_outlist (output functions not available on DI-401 and DI-700 instruments)

• Example

#include "200sdk.h"

int *input_buffer,errcode;
struct di_mode_struct mode = {0};
struct di_inlist_struct inlist[256] = {0};
char errstr[255];

Programmer’s SDK Manual

Function Reference
42

main()
{

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
/* allocate 4096 words for input */
if((input_buffer = di_buffer_alloc(0,4096) = = NULL)

printf("Insufficient memory or input buffer already allocated...\n");
if(errcode = di_list_length(1,0)) /* Set the input list length */

printf("Input list length error...\n");
if(errcode = di_inlist(inlist)) /* Set up the input list */

printf("Input list error...\n");
if(errcode = di_scan_mode(mode)) /* Set mode */

printf("Mode error...\n");
if(errcode = di_start_scan()) /* Start scanning */

printf("Start scan error...\n");
while(!kbhit()) /* Main loop executes until key hit.

Prints last values in buffer. */
printf("Current value in buffer = %04X\r",*(input_buffer +

di_buffer_status(0)));
if(errcode = di_close()){ /* close the device */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
}

di_burst_rate

• Summary

int di_burst_rate(count);

unsigned count;

• Description

The di_burst_rate function sets the burst rate. All of Dataq Instruments hardware products
continuously sample data using a burst sampling technique. With the burst sampling
technique, the board or hardware device samples data at one rate (referred to as the maximum
sampling rate or burst rate) while your computer reports (i.e., displays and stores) this data at
another rate (called the sample rate or throughput rate). Again, the burst rate determines how
fast the board or hardware device samples the data and the sample rate determines how fast
the sampled data is reported.

Programmer’s SDK Manual

Function Reference
43

DI-200, DI-201, DI-210, DI-220, DI-221TC, and DI-222
In most instances, the default value of 80,000Hz is sufficient. However the
burst rate can be modified to accommodate a specific sampling rate. The
equation that governs burst rate is as follows:

Rev. A or Rev B units:*

Burst rate
16,000,000

Count
=

Rev. C and higher units:*

Burst rate
24,000,000

Count
=

*Revision levels are returned by the pal1_rev structure element in the di_info function.

Where: count is an even integer that allows the burst rate to be modified.
The integer range that determines burst rate is: 200 ≤ count ≤ 32,767 (for
Rev. A or B) or 300 ≤ count ≤ 43,690 (for Rev. C and higher). Note that
count must be an even number. If an odd value is entered for count, it will
automatically be converted to an even value, rounded down.

DI-400, DI-401, DI-410, DI-500, DI-510, DI-720, DI-730 and DI-5001
In most instances, the default value of 40,000Hz is sufficient. However the
burst rate can be modified to accommodate a specific sampling rate. The
equation that governs burst rate is as follows:

Count
000,000,16

rate Burst 510-DI and 500,DI 410,-DI 401,-DI 400,DI =−−

Where: count is an integer that allows the burst rate to be modified. The
integer range that determines burst rate is: 32 ≤ count ≤ 32,767 for DI-400
Series instruments or 64 ≤ count ≤ 32,767 for DI-500 Series, DI-720, DI-
730, and DI-5001 instruments.

DI-700
The equation that governs sample rate is as follows:

Count
976.5625

 rate Sample 700-DI =

Where: count is an integer that allows the sample rate to be modified. The
integer range that determines sample rate is: 1 ≤ count ≤ 32,767.

Additional consideration must be given to burst rate when performing multiple tasks. The
following charts show the fastest sampling speeds that can be expected (and the count
required to deliver that speed) when performing the indicated tasks simultaneously.

Programmer’s SDK Manual

Function Reference
44

DI-200, DI-201, and DI-210 I/O Throughput Rates*

Minimum
Burst Count**

Maximum
Continuous

Rates

Simultaneous Data Acquisition Tasks

ADC DAC Signal Pre & Post
Input Output Averaging Triggering

300 80kHz ✔
300 80kHz ✔
300 80kHz ✔ ✔
300 80kHz ✔ ✔
337 71.1kHz ✔ ✔
427 56.1kHz ✔ ✔ ✔
427 56.1kHz ✔ ✔ ✔
450 53.3kHz ✔ ✔ ✔
480 50.0kHz ✔ ✔ ✔ ✔

*based on a 33MHz ‘386. **for Rev. C and higher units.

DI-220, DI-221TC, and DI-222 I/O Throughput Rates*
Maximum Continuous

Rates†
Standard Bi-directional

Parallel Port Parallel Port

Simultaneous Data Acquisition Tasks

ADC DAC Signal Pre & Post
Input Output Averaging Triggering

30kHz 37.5kHz ✔
30kHz 37.5kHz ✔
30kHz 37.5kHz ✔ ✔

80kHz‡ 80kHz‡ ✔ ✔
30kHz 37.5kHz ✔ ✔
30kHz 37.5kHz ✔ ✔ ✔

80kHz‡ 80kHz‡ ✔ ✔ ✔
60kHz‡ 60kHz‡ ✔ ✔ ✔

50.0kHz‡ 50.0kHz‡ ✔ ✔ ✔ ✔

*based on a 33MHz ‘486.
†All non-triggered modes indicate continuous throughput to disk.
‡All triggered modes indicate throughput to on-board 8kb FIFO memory only.

DI-400, DI-401, and DI-410 Throughput Rates*

Minimum
Burst Count

Maximum
Continuous

Rates†

Simultaneous Data Acquisition Tasks

ADC ADC DAC Trig≤ Trig>
Input1 Input2 Output FIFO‡ FIFO‡

32 500kHz ✔

64 250kHz ✔

64 250kHz ✔ ✔

64 250kHz ✔ ✔

64 250kHz ✔**
128 125kHz ✔ ✔**

*based on a 75MHz Pentium.
**The DI-401 is not capable of DAC Output.
†All non-triggered modes indicate continuous throughput to disk. All triggered modes indicate
throughput to on-board 15kb FIFO memory only.

‡Trig = (pre-trigger samples + post-trigger samples) × number of channels. FIFO = (7500 / number
of channels) × number of channels.

1Without signal averaging or min/max calculations.
2With signal averaging and min/max calculations.

Programmer’s SDK Manual

Function Reference
45

DI-500, DI-510, DI-720, DI-730, and DI-5001 I/O Throughput Rates*
Maximum Continuous Rates†

Standard Bi-directional Enhanced
Parallel Port Parallel Port Parallel Port

Simultaneous Data Acquisition Tasks

ADC DAC Trig≤ Trig>
Input Output FIFO‡ FIFO‡

40kHz 80kHz 250kHz ✔
40kHz 80kHz 250kHz ✔ ✔

250kHz 250kHz 250kHz ✔ ✔
40kHz 80kHz 250kHz ✔

20kHz 40kHz 125kHz ✔ ✔

*based on a 75MHz Pentium.
†All non-triggered modes indicate continuous throughput to disk. All triggered modes indicate
throughput to on-board 8kb FIFO memory only.
‡Trig = (pre-trigger samples + post-trigger samples) × number of channels.
FIFO = (7500 / number of channels) × number of channels.

For example, with a DI-220, the fastest sampling rate you could program while
simultaneously inputting data, outputting data, averaging data, and triggering is 50.0kHz.

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_BURST_ERR Burst rate error

• Dependencies

di_open

• Example

#include "200sdk.h"

int errcode;
unsigned rate;
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");
count = 193; /* init rate */
if(errcode = di_burst_rate(count)){ /* stop scanning */

di_strerr(errcode,errstr);

Programmer’s SDK Manual

Function Reference
46

printf("%s",errstr);
}
else

printf("Burst rate set.....\n");
di_close();

}

di_close

• Summary

int di_close(void);

• Description

The di_close function stops scanning, restores the device to its initial state, frees all opened
buffers, and closes the device for communications.

• Return Values

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error

• Dependencies

di_open

• Example

#include "200sdk.h"

int errcode;
char errstr[255];

main()
{

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

Programmer’s SDK Manual

Function Reference
47

if(errcode = di_close()){ /* close the device */
di_strerr(errcode, errstr);
printf("%s",errstr);

}
else

printf("Closed successfully.....\n");
}

di_copy_array
(not available on DI-401 and DI-700 instruments)

• Summary

int di_copy_array (buf_index, source, number);

unsigned buf_index; /* specifies the offset from the first element in the
buffer */

int _huge *source; /* specifies source BASIC array name */
unsigned number; /* specifies how many array elements to copy to the

output buffer */

• Description

The di_copy_array function is used to copy the contents of a BASIC array into the output
buffer. This function is necessary since Quick BASIC and Visual BASIC do not support
pointers. If an offset of zero is specified (by buf_index), a number of elements (specified by
number) from a BASIC array (specified by source) are copied to the output buffer starting
with the very first element in the array. Similarly, specifying an offset of 10 (by buff_index)
will start the copy process with the tenth value of the output buffer.

The _huge pointer allows C programmers to specify a source array larger than 64k bytes.

This function also supports buffer wrapping (i.e., if buf_index and number exceed the buffer
size in words, the copy process continues to the start of the buffer). The di_buffer_status
function can be used to compute buf_index , which must be between 0 and (buffer size - 1).
Although number may be as large as the buffer size, active scanning may concurrently output
values starting at the index returned by di_buffer_status.

• Return Value

DI_NO_ERR

Programmer’s SDK Manual

Function Reference
48

• Dependencies

di_buffer_alloc

• Example (BASIC code)

Declare Sub di_copy_array Lib "200SDK.DLL" (ByVal buf_index%, source%(),
ByVal number%)

Dim out_buff% ' offset in the output buffer
Dim analog_out%(1000) ' array used to store analog out
Dim number% ' number of samples to copy

Sub Form_Load ()
' This copies the first 500 elements of analog_out
' to the output buffer at offset 0
buf_index = 0
number = 500
di_copy_array buf_index,analog_out(0),number

End Sub

di_copy_buffer

• Summary

int di_copy_buffer (buf_index, dest (0), number);

unsigned buf_index; /* specifies the offset from the first element in the
buffer */

int _huge *dest (0); /* specifies the destination array name */
unsigned number; /* specifies how many buffer elements to copy to dest

(0) */

• Description

The di_copy_buffer function is used to copy the input buffer into a BASIC array, as defined
by dest . This function is necessary since Quick BASIC and Visual BASIC do not support
pointers. If an offset of zero is specified (by buf_index), a number of buffer elements
(specified by number) are copied to an array (specified by dest) starting with the very first
element in the buffer. Similarly, specifying an offset of 10 (by buff_index) will start the copy
process with the tenth element from the top of the buffer.

Programmer’s SDK Manual

Function Reference
49

The _huge pointer allows C programmers to specify a destination array larger than 64k bytes.

This function also supports buffer wrapping (i.e., if buf_index and number exceed the buffer
size in words, the copy process continues from the start of the buffer). The di_buffer_status
function can be used to compute buf_index , which must be between 0 and (buffer size - 1).
Although number may be as large as the buffer size, active scanning may concurrently modify
values starting at the index returned by di_buffer_status.

• Return Value

DI_NO_ERR

• Dependencies

di_buffer_alloc

• Example (BASIC code)

Declare Sub di_copy_buf Lib "200SDK.DLL" (ByVal buf_index%, dest%(), ByVal
number%)

Dim in_buff% ' offset in the input buffer Dim
analog_in%(1000) ' array used to store analog in
Dim number% ' number of samples to copy

Sub Form_Load ()
' This copies the first 500 values of the input buffer
' to the array 'analog_in' starting with element 0
buf_index = 0
number = 500
di_copy_buffer buf_index,analog_in(0),number

End Sub

di_copy_header

• Summary

unsigned FARC PASCAL di_copy_header(unsigned hdr_index, void
FAR *dest, unsigned byte_count, unsigned clear_bits);

unsigned hdr_index /* offset from beginning of header */

Programmer’s SDK Manual

Function Reference
50

void FAR *dest /* destination structure name */
unsigned byte_count /* number of bytes from header copied to dest */
unsigned clear_bits /* mask for clearing flag bits */

• Description

The di_copy_header function is used to copy CODAS header information into a BASIC
structure, as defined by dest . This function is necessary since Visual BASIC does not
support pointers. If an offset of zero is specified (by hdr_index), a number of bytes
(specified by byte_count) are copied to a structure (specified by dest) starting with the very
first byte in the header. Similarly, specifying an offset of 10 (by hdr_index) will start the
copy process with the tenth byte from the beginning of the header.

• Return Value

The di_copy_header function returns flags that indicate whether or not WINDAQ software
has updated the header. When the header is updated, all flag bits are set to one (returned
value is FFFF).

• Dependencies

A running WINDAQ application.

• Example (BASIC code)

Declare Function di_copy_header Lib "200SDK.DLL" (ByVal
hdr_index%,dest%,ByVal byte_count%,ByVal clear_bits%)

Dim flags% 'flag bits
Dim hdr_index% 'offset in header
Dim CODAS_header as CODAS_header_struct 'structure to store header

information
Dim byte_count% 'number of bytes to copy
Dim clear_bits% 'mask to indicate which flag bits

to clear

Sub Timer ()

'This program checks if the header was updated and copies the first 10
bytes 'of the header to the structure CODAS_header if it was, starting with
the 'first byte, then clears the lsb of the flag bits.

hdr_index = 0
byte_count = 10
clear_bits = 1

flags = di_copy_header (hdr_index,CODAS_header,0,clear_bits)
if (flags and clear_bits) <> 0 then 'using only the lsb of flag bits

flags = di_copy_header (hdr_index,CODAS_header,byte_count,clear_bits)

Programmer’s SDK Manual

Function Reference
51

end if

End Sub

di_copy_mux
(available only on DI-400, DI-410, DI-500 Series, DI-720, DI-730, and DI-5001 instruments)

• Summary

int di_copy_mux(dest);

int *dest; /* pointer to 16-word buffer */

• Description

Each byte describes a bank of 16 channels. The first two bytes are reserved, the third byte is
for channels A1 through A16, the fourth is for A17 through A32, etc. In each byte, the bit
assignments are as follows:

bit
7

bit
6

bits
5, 4, 3

bit
2

bit
1

bit
0

PGH/PGL Input Type Channel MUX Cable High Voltage Option

Bit 7: PGH/PGL Status
This bit describes the MUX gain status. When set, the MUX is low gain PGH (programmable
gain factors 1, 2, 4, and 8). When clear, the MUX is high gain PGL (programmable gain
factors 1, 10, 100, and 1000 on DI-500 Series instruments or 1, 10, and 100 on DI-400 Series
instruments).

Bit 6: Reserved
This bit describes the input type. When set, the inputs are signal conditioned (DI-5B
amplified). When clear, the inputs are high-level.

Bits 5, 4, and 3: Channel status
These bits contain bits one through three of the primary channel to which the MUX connects
(bit 4 of the primary channel is always 1, and bit 0 is 1 for odd channels or 0 for even
channels).

Bit 2: MUX status
This bit describes the MUX status. When set, MUX is not present. When clear, MUX is
present.

Programmer’s SDK Manual

Function Reference
52

Bit 1: Cable status
This bit describes the cable status. When set, the cable is not defective. When clear, the cable
is defective.

Bit 0: High voltage option status
This bit describes the high voltage option status of the bank of 16 channels. When clear, this
bank of 16 channels has high voltage measurement capability. When set, this bank of 16
channels does not have high voltage measurement capability.

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_INFO_ERR Device is not a DI-400 Series, DI-500 Series, DI-720, DI-730, or DI-

5001 instrument

• Dependencies

none.

• Example

main()
{

int mux_infor[16];
di_open();
di_copy_mux(mux_info);
di_close();

}

di_ct_event
(not available on DI-400, DI-401, DI-410, DI-500, DI-510, DI-700, DI-720, DI-730, or

DI-5001 instruments)

• Summary

int di_ct_event(unsigned bit_and,unsigned bit_xor);

unsigned bit_and; /* specifies which input bit(s) to count */

Programmer’s SDK Manual

Function Reference
53

unsigned bit_xor; /* compare value */

• Description

The di_ct_event function starts event counting using the digital input bits. Before event
counting can begin, you must specify the bit mask (bit_and) and the way an event will be
counted (bit_xor). Use the di_ct_status function to return the event count (maximum count
is 64K).

bit_and is used to specify which digital input bit(s) you wish to use for event counting.
bit_and creates a bit mask that ANDs the actual digital input port with the corresponding bit
in the mask. A 1 in the bit mask unmasks the corresponding input port, allowing the signal
from this port to be compared with bit_xor . Similarly, 0's in the bit mask prevent the input
port(s) from being compared.

bit_xor is used as a compare value to define the trigger condition. The signal from the input
bit(s) that passes through the bit mask is XOR’d with the corresponding bit in bit_xor . If the
compared values are the same, the event is counted. If the compared values are not the same,
the event is not counted.

For example, suppose you had an eight-bit counter connected to the input ports and you
wanted to count every occurrence of 52. Start by specifying bit_and . In this case, all the bits
of the bit mask should be unmasked (set to 1 or allowed to pass through) as follows:

11 1 1 1 mask (bit_and)

5 2 Hex value

11 1

If only the input ports that correspond to 52 were unmasked, several additional values would
be allowed to pass, resulting in false event counts as follows:

Programmer’s SDK Manual

Function Reference
54

10 0 1 0 mask (bit_and)

5 2 Hex value

00 1

5 3
5 6
5 7
5 A
5 B
5 E
5 F
7 3
7 6
7 7
7 A
7 B
7 E
7 F
D 3
D 6
D 7
D A
D B
D E
D F
F 3
F 6
F 7
F A
F B
F E
F F

Hex values
that would
also pass

through the
above mask

As the above illustrates, selecting an appropriate bit_and value is important. In our example,
the hexadecimal value for bit_and would be FF. The next step is to determine bit_xor .
Since you are interested in counting every occurrence of 52, bit_xor is set to 52.

11 1 1 1 mask (bit_and)

5 2 Hex value

11 1

5 2 bit_xor

The di_ct_event function call for this example would be:

di_ct_event(0xFF,0x52)

The minimum pulse width for this function is 500 nS. The maximum frequency is 500 kHz

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error

Programmer’s SDK Manual

Function Reference
55

DI_CT_EVENT_ERR Counter timer start error

• Dependencies

di_open

• Example

#include "200sdk.h"

int errcode;
unsigned bit_in;
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");
bit_in = 0; /* use digital input bit 0 */
if(errcode = di_ct_event(2,2)){ /* start event counting */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Event counting started.....\n");
di_close();

}

di_ct_one_shot
(not available on DI-400, DI-401, DI-410, DI-500, DI-510, DI-700, DI-720, DI-730, or

DI-5001 instruments)

• Summary

int di_ct_one_shot(bit_and, bit_xor, bit_out, width);

unsigned bit_and; /* specifies input bit(s) to be used as trigger */
unsigned bit_xor; /* trigger compare value */
unsigned bit_out; /* digital output bit(s) to be used as one shot output */
unsigned width; /* pulse width = (125 nS + 1000*width) */

Programmer’s SDK Manual

Function Reference
56

• Description

The di_ct_one_shot function performs a digital one-shot operation according to the
parameters passed to it. A digital one-shot occurs when one or more digital output lines
(bit_out) change state for a specified amount of time (width) after a specified trigger occurs
(bit_and) and (bit_xor). After width expires, bit_out reverts back to its original state.
The following diagram illustrates a typical one-shot operation:

bit_out

trigger (combination of bit_and & bit_xor)

width

bit_and is used to specify which digital input bit(s) you will be using for the trigger.
bit_and creates a bit mask that ANDs the actual digital input port (used as the trigger) with
the corresponding bit in the mask. A 1 in the bit mask unmasks the corresponding input
port(s), allowing the signal from this port to be compared with bit_xor . A 0 in the bit mask
prevents the other input port(s) from being compared.

bit_xor is used as a compare value to define the trigger condition. The signal from the input
bit(s) that passes through the bit mask is XOR’d with the corresponding bit in bit_xor . If the
compared values are the same, a one-shot is generated. If the compared values are not the
same, the one-shot is not generated.

The maximum pulse width is 65.536 mS.

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_ONE_SHOT_ERR Counter timer one shot error

• Dependencies

di_open

Programmer’s SDK Manual

Function Reference
57

• Example

#include "200sdk.h"

int errcode;
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

if(errcode = di_ct_one_shot(1,1,1,128)){ /* one shot function */
di_strerr(errcode,errstr);
printf("%s",errstr);

}

di_close();

}

di_ct_status
(not available on DI-400, DI-401, DI-410, DI-500, DI-510, DI-700, DI-720, DI-730, or

DI-5001 instruments)

• Summary

unsigned di_ct_status(void);

• Description

The di_ct_status function returns the present count of the event counter.

• Return Value

Present event counter value.

• Dependencies

di_open

Programmer’s SDK Manual

Function Reference
58

di_ct_event

• Example

#include "200sdk.h"

int errcode;
char errstr[255];
struct di_mode_struct mode;

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr) ;
printf("%s",errstr);

}
di_ct_event(1,1) ; /* start event counting */
while(!kbhit()) /* count events while waiting for key to be pressed */

;
i = di_ct_status() ;
printf(“Count = %d\n”,i);
di_close() :

}

di_ct_stop
(not available on DI-400, DI-401, DI-410, DI-500, DI-510, DI-700, DI-720, DI-730, or

DI-5001 instruments)

• Summary

int di_ct_stop(void);

• Description

The di_ct_stop function stops previously started event counting.

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_CT_STOP_ERR Counter timer stop error

Programmer’s SDK Manual

Function Reference
59

• Dependencies

di_open
di_ct_event

• Example

#include "200sdk.h"

int errcode;
unsigned bit_in;
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");
bit_in = 0; /* use digital input bit 0 */
if(errcode = di_ct_event(bit_in)){ /* start event counting */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Event counting started.....\n");
if(errcode = di_ct_stop()){ /* stop event counting */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Event counting stopped.....\n");
di_close();

}

di_ct_wave
(not available on DI-400, DI-401, DI-410, DI-500, DI-510, DI-700, DI-720, DI-730, or

DI-5001 instruments)

• Summary

int di_ct_wave(bit_out, hi_factor, lo_factor);

unsigned bit_out; /* digital output bit(s) to be used as wave output */
unsigned hi_factor; /* waveform high width = (1 µs * hi_factor) */
unsigned lo_factor; /* waveform low width = (1 µs * lo_factor) */

Programmer’s SDK Manual

Function Reference
60

• Description

The di_ct_wave function generates a square wave that goes high for (1 µs * hi_factor)

and goes low for (1 µs * lo_factor) . The values entered for hi_factor and lo_factor in
the above equations determine the high and low pulse widths.

For example, suppose you wanted to generate a square wave output on digital output bits 6
and 0 that goes high for 1µS and then low for 4µS. Start by determining the hi and lo factors.
Plug 1µS into the equation and solve for the hi_factor :

()1 S = 1 S hi_factor

1 = hi_factor

µ µ ×

Similarly, plug 4µS into the equation and solve for the lo_factor :

()4 S = 1 S lo_factor

4 = lo_factor

µ µ ×

Next, determine the hex value for bit_out . The hex value is dictated by the digital output
bits you want to output the square wave. Place a one in the bit position of the desired digital
output as follows:

7 6 5 4 3 2 1 0Digital output bits (8 total):

10 0 0 0
Desired waveform output (to generate a
wave output on bits 6 and 0):

4 1Hex value:

00 1

To generate a wave output on digital output bits 6 and 0 that goes high for 1µS and then low
for 4µS, the di_ct_wave function call would look like this:

di_ct_wave (0x41,1,4)

The hi factor and lo factor equations are valid when the hi and lo factors are non-zero. Using
zero for either factor is equivalent to setting it to 216. The hi and lo factors also must be
integers.

The highest waveform frequency that can be generated with this function is 500 kHz (using
hi and lo factors of 1) and the lowest frequency that can be generated is 7.629 Hz (using hi
and lo factors of 216).

Programmer’s SDK Manual

Function Reference
61

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_CT_WAVE_ERR Counter timer waveform error

• Dependencies

di_open

• Example

#include "200sdk.h"

int errcode;
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");
if(errcode = di_ct_wave(1,1000,128)){ /* waveform function */

di_strerr(errcode, errstr);
printf("%s",errstr);

}
di_close();

}

di_digin

• Summary

unsigned di_digin(void);

• Description

di_digin is an immediate function that reads a word from the digital input port.

Programmer’s SDK Manual

Function Reference
62

On all instruments except the DI-500 Series, the DI-720, and the DI-5001, the digital data is
in the lower byte.

On DI-500 Series, DI-720, and DI-5001 instruments, the digital data is in the higher byte.
Only DI-500-16 and DI-510-48 instruments in the DI-500 Series provide access to digital
data (it is accessed from the AUXILIARY PORT).

The value read from the digital input port can range from 0 to 255. On DI-200 and DI-210
instruments, this function should not be issued while an input, output, or simultaneous input
and output scanning operation is in progress. If it is, the scanning operation will halt. On all
other instruments, scanning will continue unimpeded when this function is issued, and
di_digin will execute successfully.

• Return Value

The function returns a byte from the digital input port.

• Dependencies

di_open

• Example

#include "200sdk.h"

int i;
char errstr[255];

main()
{

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

i = di_digin(); /* read digital input port */

printf("Digital input port = %04X\n",i);
di_close();

}

Programmer’s SDK Manual

Function Reference
63

di_digout

• Summary

unsigned di_digout(i);

unsigned i; /* value to output to the digital output port */

• Description

di_digout is an immediate function that writes (outputs) a byte to the digital output port. The
output value can range from 0 to 255. On DI-200 and DI-210 instruments, this function
should not be issued while an input, output, or simultaneous input and output scanning
operation is in progress. If it is, the scanning operation will halt. On all other instruments,
scanning will not halt when this function is issued, but the di_digout function will be ignored
unless a special DSP code has been installed. Contact Dataq Instruments for complete details.

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_DIGOUT_ERR Digital output error

• Dependencies

di_open

• Example

#include "200sdk.h"
char errstr[255];

int i;

main()
{

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

Programmer’s SDK Manual

Function Reference
64

i = 5;
if(errcode = di_digout(i)){ /* output i to digital output port */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Digital output successful.....\n");
di_close();

}

di_get_acq_header

• Summary

CODASHDR far * di_get_acq_header(void);

• Description

The di_get_acq_header function returns either a far pointer to the CODAS header structure
(allocated by WINDAQ waveform recording software) or NULL if the structure is not
available. This function is used in conjunction with WINDAQ waveform recording software to
access header file information (e.g., sample rate, number of channels, etc. Complete header
file details can be found in the Data Storage Format section of the WINDAQ/Pro and
WINDAQ/Pro+ User’s Manual). For example, suppose you wanted to write an application
that would intercept the data from WINDAQ’s data buffer and apply a moving average to it.
You would call di_get_acq_header to find out the sampling rate, number of enabled
channels, etc.

If the programming language you are using accepts Windows™ messages (such as C or
C++), you can register the messages “WindaqUpdate” and “WindaqExit”, which will notify
you whenever WINDAQ waveform recording settings (sample rate, channels, etc.) change.
The example segment of code shows how this can be implemented.

• Return Value

The di_get_acq_header function returns a far pointer to the CODAS header structure
(allocated by WINDAQ waveform recording software), or NULL if the structure is not
available.

• Dependencies

Programmer’s SDK Manual

Function Reference
65

A running WINDAQ application.

• Example

#include "200sdk.h"

.

.

.
UINT wm_WindaqUpdate;
UINT wm_WindaqExit;

int PASCAL WinMain(HANDLE hInstance, HANDLE hPrevInstance, LPSTR lpszCmdLine,
int nCmdShow)
{
CODASHDR far * lpCODASHDR;

.

.

.
wm_WindaqUpdate=RegisterWindowMessage("WindaqUpdate");
wm_WindaqExit=RegisterWindowMessage("WindaqExit");
.
.
.
lpCODASHDR=di_get_acq_header();
/* Now you can set up your app according to WINDAQ */

}

LONG FAR PASCAL WndProc(HWND hWnd, WORD Message, WORD wParam, LONG lParam)
{
CODASHDR far * lpCODASHDR;

.

.

.
if (Message==wm_WindaqUpdate){

/* WINDAQ/x00 changes its setting */
lpCODASHDR=di_get_acq_header();
/* Now you can change settings of your app according to WINDAQ */
.
.
.

};
if (Message==wm_WindaqExit){

/* WINDAQ quits */

};

}

di_info

• Summary

Programmer’s SDK Manual

Function Reference
66

int di_info(info);

struct di_info_struct{
unsigned port; /* device port address */
unsigned buf_in_chn; /* device input channel */
unsigned buf_out_chn; /* device output channel (all instruments

except DI-401 and DI-700) or reserved for
compatibility (DI-401 and DI-700
instruments) */

unsigned sft_lvl; /* software interrupt level */
unsigned hrd_lvl; /* hardware interrupt level */
int huge *buf_in_ptr; /* input buffer pointer */
unsigned buf_in_size; /* input buffer size (in words) */
int huge *buf_out_ptr; /* output buffer pointer (all instruments

except DI-401 and DI-700) or reserved for
compatibility (DI-401 and DI-700
instruments) */

unsigned buf_out_size; /* output buffer size,in words (all
instruments except DI-401 and DI-700) or
reserved for compatibility (DI-401 and DI-
700 instruments) */

char tsr_version[20]; /* TSR version */
char dsp_version[20]; /* DSP program version */
char sdk_version[20]; /* SDK library version */
unsigned long serial_no; /* PCB serial no. */
unsigned long last_cal; /* last calibration time in sec since 1/1/1970 */
char board_id[10]; /* PCB model name */
char pgh_pgl; /* type of PGA; 0 = PGH, 1 = PGL (DI-200, DI-

220, DI-222, DI-400, DI-500, and DI-510
instruments) or reserved for compatibility
(all other instruments) */

char hrdwr_rev; /* ASCII char REV letter */
char pal0_rev; /* ASCII char REV of PAL0 */
char pal1_rev; /* ASCII char REV of PAL1 */

}*info;

• Description

The di_info function loads a structure with information about the device. Elements
buf_in_chn and buf_out_chn equal the device's hardware DMA channel or software FIFO
number, depending on the instrument.

The eighth character of the char dsp_version [20] string is a 14-bit or 16-bit resolution
flag. For instruments capable of recording with either 14 or 16 bits of resolution (i.e., DI-700,
DI-720, DI-730, and DI-5001), the eighth character of this string shows “A” for 14-bit and
“B” for 16-bit. For all other instruments (i.e., the other instruments that are not capable of
recording with either 14- or 16-bits of measurement resolution), “A” means the instrument is
using the non-mux DSP program and “B” means the instrument is using the mux version of
the DSP program.

• Return Value

Programmer’s SDK Manual

Function Reference
67

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_INFO_ERR Information error

• Dependencies

di_open

• Example

#include "200sdk.h"

int errcode;
struct di_info_struct info;
char errstr[255];

main()
{

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");
if(errcode = di_info(&info)){ /* Get info about the device*/

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else{

printf("\nPort: %04X\n",info.port);
printf("Input chn: %04X\n",info.buf_in_chn);
printf("Output chn: %04X\n",info.buf_out_chn);
printf("Sft lvl: %04X\n",info.sft_lvl);
printf("Hrd lvl: %04X\n",info.hrd_lvl);
printf("Input ptr: %08lX\n",info.buf_in_ptr);
printf("Output ptr: %08lX\n",info.buf_out_ptr);
printf("Input size: %04X\n",info.buf_in_size);
printf("Output size: %04X\n",info.buf_out_size);
printf("TSR Ver: %s\n",info.tsr_version);
printf("DSP Ver: %s\n",info.dsp_version);
printf("SDK Ver: %s\n",info.sdk_version);
printf("Serial #: %08lX\n",info.serial_no);
printf("Last cal: %s",ctime(&info.last_cal));
printf('Board ID: %s\n",info.board_id);
printf("PGH/PGL(1/0): %0x1\n",info.pgh_pgl);
printf("Hard Rev: %c\n",info.hrdwr_rev);
printf("PAL0 Rev: %c\n",info.pal0_rev);
printf("PAL1 Rev: %c\n",info.pal1_rev);

}
di_close();

}

Note

Programmer’s SDK Manual

Function Reference
68

This example will return zeros for the BUF pointer and the size information because
the buffers have not been allocated.

di_inlist

• Summary

int di_inlist(input_list);

/* To get dig in, set chan = 8 and diff = 1 */

struct di_inlist_struct{
unsigned chan; /* input channel, 0 to 255 */
unsigned diff; /* input configuration (single-ended or diff) */
unsigned gain; /* gain. 0 to 17 */
unsigned unipolar; /* unipolar/bipolar; 0=bipolar, 1=unipolar

(reserved for compatibility on DI-700)*/
unsigned dig_out_enable; /* 1=enables dig out, 0=disables dig out

(reserved for compatibility on DI-700)*/
unsigned dig_out; /* digital data (reserved for compatibility on

DI-700)*/
unsigned ave; /* sample averaging. 0 = off, 1 = on (always

disabled on DI-700)*/
unsigned counter; /* sample rate counter (reserved for

compatibility on DI-700)*/
}*input_list;

• Description

The di_inlist function initializes the input list. This function must be called before
di_start_scan and after di_list_length. Each element in the structure is defined as follows:

chan allows you to specify the input channel you wish to sample. Note that the first channel
listed on the input scan list is used as the trigger channel by the di_mode function (for those
instruments that support the di_mode function). For example if channel 3 is specified by
chan as the first element in the input scan list, triggering will occur on channel 3. Values for
chan can range from 0 to 255, according to the following equations:

All instruments except DI-400, DI-401, DI-410, DI-500, DI-510, DI-700, DI-
720, DI-730, and DI-5001

With 16 channels or less: chan = channel#

With more than 16 channels:

Programmer’s SDK Manual

Function Reference
69

chan = channel# mod 16 + 16(output channel + 1)

channel# is the analog input channel on the EXP board you wish to sample.
output channel is the position of the jumper on the EXP board. On hardware
with more than 16 channels, the mod operator in the equation above combines two
integer expressions using modulo arithmetic. For two integer values, modulo
arithmetic returns only the remainder from an integer division. That is, 6 mod 4 is
2, the remainder of the integer division of 6 by 4. For example, let’s say we have
three 32-channel EXP boards multiplexed to a DI-200 Series board and we want
to record analog input channel five on the third EXP board. What channel do we
specify on the input list ?

+ - G + - G + - G + - G
4 5 6 7

+ - G + - G + - G + - G

0 1 2 3

EXP Series Board

Input signal
connected here (#5)

OUTPUT CHANNEL
•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••

•• •• •• •• •• •• •• •• •• •• •• •• •• •• •• ••

0 1 234567 8
9
10

11
12

13
14

15

EXP inputs 0 - 15 are MUXed into
output channel 4, which is analog
input 4 on the DI-200 Series board

On each EXP board, each bank of 16 analog inputs is multiplexed into one output
(specified by the position of the OUTPUT CHANNEL jumper on the EXP board).
This output from the EXP board is connected to an internal analog input on the
DI-200 Series board. Assuming the first EXP board uses output channels 0 and 1
and the second EXP board uses outputs 2 and 3, the third EXP board will
multiplex inputs 0 through 15 into output channel 4 and inputs 16 through 31 into
output channel 5. From the equation:

chan = (channel#) mod 16 + 16(output channel +1)

chan = (5) mod 16 + 16(4 + 1)
chan = 5 + 80
chan = 85

Now suppose we want to record channel 23 on the third EXP board. What channel
do we specify on the input list in this case?

Programmer’s SDK Manual

Function Reference
70

chan = (channel#) mod 16 + 16(output channel +1)

chan = (23) mod 16 + 16(5 + 1)
chan = 7 + 96
chan = 103

Finally, suppose we have just one DI-200 Series board (not multiplexed) and we
want to record channel 6. What channel do we specify on the input list? Since we
are using non-multiplexed hardware (only 16 channels), the first equation applies:

chan = channel#
chan = 6

DI-400, DI-401, DI-410, DI-500, DI-510, DI-700, DI-720, DI-730, and DI-5001

With 16 channels or less: chan = (channel# - 1)

With more than 16 channels:

chan = (channel# - 1) + 32(mux letter - ‘A’ + 1)

channel# is the analog input channel you wish to sample. On instruments with
more than 16 channels, mux letter is the letter you assigned to the instrument
(written on the overlay) during installation and initial configuration. This letter is
important for keeping track of all the analog input channels on your instrument(s).
For example, let’s say we have three DI-500-32-P instruments multiplexed
together and we want to record analog input channel five on the third instrument.
What channel do we specify on the input list? During installation, you would have
labeled the instruments “A”, “B”, and “C”. From the equation:

chan = (channel# - 1) + 32(mux letter - ‘A’ + 1)

chan = (5 - 1) + 32(C - A + 1)
chan = 4 + 32(2 + 1)
chan = 4 + 96
chan = 100

diff allows you to specify whether the channel specified by chan is single-ended or
differential as follows:

DI-200, DI-201, DI-210, DI-220, DI-222, DI-221TC, DI-400, DI-410, DI-700,
DI-720, and DI-5001 Instruments
diff = 0 for single ended input configuration.
diff = 1 for differential input configuration (do not set diff = 1 for channels on
multiplexers, even though the inputs are differential).

DI-401 Instruments
reserved for compatibility.

Programmer’s SDK Manual

Function Reference
71

DI-500 and DI-510 Instruments
diff = 0 for single ended input configuration.
diff = 1 for differential input configuration. This configuration allows you to see
the difference between 2 differential input channels, but only on chan 1 through 8
and 17 through 24 of DI-500-16 and DI-510-48 instruments. When chan 1
through 8 or 17 through 24 is specified for differential operation, the other
channel that creates the differential pair is automatically selected, eight channels
away. For example, if chan 1 is configured for differential operation, chan 9
becomes the companion channel, similarly with 2 and 10, 8 and 16, 18 and 26,
etc. In every case, the lowest channel number becomes the positive (+) differential
input and the automatically selected channel becomes the negative (-) differential
input.

DI-730 Instruments
diff = 0 always. DI-730 instruments are always differential.

gain allows you to specify a gain factor (assigned to a code, from the following table) for the
channel specified by chan . With the DI-221TC, you can specify a gain factor for linear or
non-linear inputs. Note that this structure element is reserved for compatibility on DI-401
instruments (gain is fixed at 1):

Programmer’s SDK Manual

Function Reference
72

Code

DI-200PGH,
DI-201PGH,

DI-210,
DI-220PGH,
DI-222PGH,
DI-400PGH,

DI-410,
DI-500PGH,
DI-510PGH,

DI-720,
DI-5001

DI-200PGL,
DI-201PGL,
DI-220PGL,
DI-222PGL,
DI-500PGL,
DI-510PGL,

DI-700

DI-400PGL DI-221TC Only DI-730

Gain Gain Gain Gain Input Type Gain

0 1 1 1 1 100 (10Vfs)
1 2 10 10 10 Linear 1,000 (1Vfs)
2 4 100 100 100 10,000 (0.1Vfs)
3 8 1,000 1,000 100,000 (0.01Vfs)
4* 1 1 (1,000Vfs)
5* 10 Non-linear 0† 10 (100Vfs)
6‡ 100
7‡ 1,000
8* 1
9* 10 Non-linear 1†
10 100
11 1,000
12* 1
13* 10 Non-linear 2†
14 100
15 1,000
16 Reserved Reserved
17 CJC †

*Gain codes 4, 5, 8, 9, 12, and 13 are undefined when making thermocouple measurements.

Vfs = volts full scale.

†If you are specifying a gain code from non-linear input groups 0, 1, or 2 and you are measuring
with a thermocouple, you must add an additional channel to the input scan list. This additional
channel must specify cold junction compensation (code 17) as the gain element and it should be
placed last in the input scan list.

Thermocouple type is defined by the value of the unsigned chan
variable of the last scan list element containing gain code 17:

unsigned chan
value TC type

Multiplier for
gain of 100

Multiplier for
gain of 1000

0 K 1232.3333 121.9772
1 J 760 94.94897
2 T 400 115.2563
3 R 1768 548.1296

‡The A/D converter delivers “counts” as an end result instead of degrees.
These counts can be scaled to °C as follows:

()x
multiplier C

32768

 × =°

Programmer’s SDK Manual

Function Reference
73

where x = ADC counts as delivered by the hardware, and multiplier is
from the table above. Make sure you use the appropriate multiplier for the
selected gain.

unipolar allows you to specify whether the channel specified by chan is a unipolar or
bipolar signal. On DI-401 and DI-700 instruments, this structure element is reserved for
compatibility. On DI-400, DI-410, DI-500, DI-510, DI-720, DI-730, and DI-5001
instruments, unipolar configuration is not supported. Therefore on these instruments,
unipolar must be 0.

dig_out_enable allows you to enable or disable the digital output bits. This structure
element is reserved for compatibility on DI-700 instruments.

DI-200, DI-201, DI-210, DI-220, DI-221TC, and DI-222 Instruments
When dig_out_enable is 1, digital output is enabled and the data appearing on
the digital output bits is written to lines D0 through D4 of the digital output port.

When dig_out_enable is 0, digital output is disabled. When digital output is
disabled and:

chan = 0 to 15, digital output bits D2 through D0 are used to specify an
acquisition method (either average, minimum, or maximum. Refer to the
description of dig_out for full details). In other words, you cannot use the
three least significant bits of digital output, they are used to specify
acquisition method.

chan is on a multiplexer, lines D3 through D0 of the digital output port are
set to the least significant four bits of the EXP board input being
multiplexed, and dig_out_enable automatically becomes enabled (chan

setting of 16 or greater automatically overrides a dig_out_enable = 0
setting). In other words, with a MUX channel, you cannot use the four
least significant bits of digital output (they are used) and you cannot
specify a maximum or minimum acquisition method.

DI-400, DI-401, DI-410, DI-500, DI-510, DI-720, DI-730, and DI-5001
When dig_out_enable is 1, digital output is enabled and the data appearing on
the digital output bits is written to lines D0 through D3 of the EXPANSION port.

When dig_out_enable is 0, digital output is disabled. When digital output is
disabled and:

chan is on a multiplexer, lines D3 through D0 of the EXPANSION port are
set to the least significant four bits of the channel to which the multiplexer
is connected, and dig_out_enable automatically becomes enabled (when
chan is on a multiplexer, a dig_out_enable = 0 setting is automatically
overridden). In other words, with a MUX channel you cannot use the four
least significant bits of digital output, they are taken.

Programmer’s SDK Manual

Function Reference
74

dig_out is a multipurpose structure element. It’s function depends on the instrument being
used and the status of the dig_out_enable element. This structure element is reserved for
compatibility on DI-700 instruments.

DI-200, DI-201, DI-210, DI-220, DI-221TC, and DI-222 Instruments
When digital output is enabled (dig_out_enable = 1), the dig_out bits output a
digital value to lines D4 through D0 of the digital output port.

When digital output is disabled (dig_out_enable = 0) and chan = 0 to 15,
dig_out bits D2 through D0 are used to specify an acquisition method as follows:

D2 D1 D0
0 0 0 reports average value
0 0 1 reports maximum value
0 1 0 reports minimum value

All Dataq Instruments hardware products continuously sample data using a burst
sampling technique. With the burst sampling technique, the board or hardware
device samples data at one rate (referred to as the maximum sampling rate or burst
rate) while your computer reports (i.e., displays and stores) this data at another
rate (called the sample rate or throughput rate). Again, the burst rate determines
how fast the board or hardware device samples your data and the sample rate
determines how fast the sampled data is reported. The board or hardware device
can sample data much faster than it can report it. For example, let’s say we want
to record one channel of data at 100 Hz and our burst rate is set at 50kHz. In this
example, we will be sampling the data at 50kHz and reporting it at 100Hz, a 500
to 1 ratio. This means that for every 500 data points sampled, only 1 will be
reported. The dilemma becomes: which data point out of the 500 gets reported?
Fortunately, you have a choice of methods for reporting this single data point.

Average - This method averages all of the data points in the burst sample
and returns this average as the single value for storage and display. This is
the most universal method and should be used in all cases unless you wish
to report peak or valley values (in which case you would use the maximum
or minimum method respectively).

Maximum - This method returns the highest value data point in the burst
sample for storage and display. The rest of the data points in the burst
sample are ignored.

Minimum - This method returns the lowest value data point in the burst
sample for storage and display. The rest of the data points in the burst
sample are ignored.

Programmer’s SDK Manual

Function Reference
75

Last Point - This method simply returns the last input data point in the
burst sample for storage and display. The rest of the data points in the
burst sample are ignored. This is the only data reporting method used by
DI-700 instruments.

When digital output is disabled (dig_out_enable = 0) and chan is on a
multiplexer, dig_out bits D3 through D0 are set to the least significant four bits
of the EXP board input being multiplexed. In other words, with a MUX channel
you cannot use the four least significant bits of digital output, they are taken.

DI-400, DI-401, DI-410, DI-500, DI-510, DI-720, DI-730 and DI-5001
When digital output is enabled (dig_out_enable = 1), the dig_out bits output a
digital value to lines D3 through D0 of the EXPANSION port.

When digital output is disabled (dig_out_enable = 0), there is no digital output
(digital output is disabled). However, when digital output is disabled and chan is
on a multiplexer, lines D3 through D0 of the EXPANSION port are set to the least
significant four bits of the channel to which the multiplexer is connected, and
dig_out_enable automatically becomes enabled (when chan is on a multiplexer,
a dig_out_enable = 0 setting is automatically overridden). In other words, with a
MUX channel you cannot use digital output, it is disabled.

ave allows you to enable or disable sample averaging (always disabled on DI-700
instruments).

When sample averaging is enabled (ave = 1), up to 32,767 consecutive samples for each
entry on the input list can be averaged. All Dataq Instruments hardware products
continuously sample and report data using a burst sampling method. When averaging is
enabled, data is temporarily stored in an accumulator until the sample interval (specified by
counter on the input list) elapses. When the sample interval elapses, the value reported is not
a single instantaneous sample but the average of all samples since the last interval. On DI-
200 Series instruments, averaging works only for the first 32 analog input channels appearing
on the input scan list. It is not possible to average all 256 entries on the list. However on DI-
400 Series, DI-500 Series, DI-720, DI-730, and DI-5001 instruments, it is possible to average
all 256 input scan list entries.

When sample averaging is disabled (ave = 0) on:

DI-200, DI-201, DI-210, DI-220, DI-221TC, and DI-222 Instruments
The last point acquisition method is enabled (refer to the description of dig_out

for full acquisition method details).

DI-400, DI-401, DI-410, DI-500, DI-510, DI-720, DI-730, and DI-5001
Digital output bit D4 and ave work together to specify the acquisition method as
follows (refer to the description of dig_out for full acquisition method details):

Programmer’s SDK Manual

Function Reference
76

D4 ave acquisition method
0 0 reports last point
0 1 reports average value
1 0 reports minimum value
1 1 reports maximum value

counter allows you to adjust the sample rate counter. This structure element is reserved for
compatibility on DI-700 instruments. Since the input scan list is capable of holding 256
entries, it is possible to program each channel in the input list for a different sampling rate.
The equation for determining the value required for a specific sampling rate is as follows:

S =
B

L C +1()

Where: S = desired sampling rate of the input list entry, B = burst rate of the instrument, L =
length of the input or output list (whichever is greater), and C = “count weight” or counter .

Since simultaneous input and output operations are possible, some consideration must be
given to input and output synchronization. The following table illustrates the order of each
input/output operation, with respect to the other operations. In this example, there are 10
elements each in the input and output scan lists. Each input or output is referenced to its
position in the input or output scan list.

Programmer’s SDK Manual

Function Reference
77

Sample
Number

Analog
Input

Analog
Output

Digital In
DMA

Digital Out
DMA

Digital Out
Inlist

Digital Out
Outlist

1 - - - - 0 -
2 - - - 0 1 0
3 0 - 0 1 2 1
4 1 0 1 2 3 2
5 2 1 2 3 4 3
6 3 2 3 4 5 4
7 4 3 4 5 6 5
8 5 4 5 6 7 6
9 6 5 6 7 8 7

10 7 6 7 8 9 8
11 8 7 8 9 0 9
12 9 8 9 0 1 0
13 0 9 0 1 2 1
14 1 0 1 2 3 2
15 2 1 2 3 4 3
16 3 2 3 4 5 4
17 4 3 4 5 6 5
18 5 4 5 6 7 6
19 6 5 6 7 8 7
20 7 6 7 8 9 8

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_INLIST_ERR Value in inlist structure out of range error

• Dependencies

di_open
di_list_length

• Example

#include "200sdk.h"

int errcode;
#define IDIM 256 /* largest value allowed */
struct di_inlist_struct inlist[IDIM] = {0}; /* input list cleared */
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */

Programmer’s SDK Manual

Function Reference
78

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

/* The following initializes scan list position 0 and must be repeated for all
positions intended to be scanned */

inlist[0].chan = 5; /* channel 5 */
inlist[0].diff = 0; /* single ended */
inlist[0].gain = 0; /* gain of 1 */
inlist[0].unipolar = 0; /* bipolar */
inlist[0] dig_out_enable = 1 /* enable digital output */
inlist[0].dig_out = 3; /* output digital value 3 */
inlist[0].ave = 0; /* averaging off */
inlist[0].counter = 100; /* init counter */

di_list_length (IDIM, 0);
if(errcode = di_inlist(inlist)){ /* initialize the input list */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Input list initialized.....\n");
di_close();

}

di_list_length

• Summary

int di_list_length(in_length,out_length);

unsigned in_length; /* sets input list length */
unsigned out_length; /* sets output list length */

• Description

The di_list_length function sets input and output scan list lengths. On DI-401 and DI-700
instruments, output functions are not available. Therefore unsigned out_length is reserved
for compatibility.

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_LENGTH_ERR List length error

Programmer’s SDK Manual

Function Reference
79

• Dependencies

di_open

• Example

#include "200sdk.h"

int errcode;
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");
if(errcode = di_list_length(1,0)){ /* scan one input element (no

outputs) */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Length error.....\n");
di_close();

}

di_mode
(not available on DI-221TC and DI-700 instruments)

• Summary

int di_mode(mode);

struct di_mode_struct{
unsigned mode:4; /* specifies the trigger mode as follows:

0 = trigger off
1 = analog
2 = digital
5 = software trigger */

unsigned hystx:4; /* on DI-400, DI-401, DI-410, DI-500, DI-510, DI-
720, DI-730, and DI-5001 instruments, specifies
the hysteresis index as follows (on all other
instruments, use 0):

Programmer’s SDK Manual

Function Reference
80

hysteresis
index

hysteresis
+ and - from
level in LSB

of 12-bit
ADC

0 0
1 1
2 2
3 3
4 4
5 6
6 9
7 13
8 19
9 28

10 40
11 58
12 84
13 122
14 176
15 255

*/
unsigned scnx:8; /* input scan list index of trigger channel, 0 for

first channel and 0 for all instruments except
DI-400, DI-401, DI-410, DI-500, DI-510, DI-720,
DI-730, and DI-5001 */

unsigned trig_level; /* for an analog trigger; specify a 12 or 14-bit,
2’s complement, left justified value. For a
digital trigger; specify 1 of the 8 digital
input bits. */

unsigned trig_slope; /* 0 triggers on rising slope, 1 triggers on
falling slope */

unsigned trig_pre; /* specifies the number of scans through the input
list for pre-trigger data */

unsigned trig_post; /* specifies the number of scans through the input
list for post-trigger data */

}*mode;

• Description

The di_mode function initializes the hardware for triggering on all instruments except the
DI-221TC. The di_start_scan function is then called to start scanning. The di_trig_status
function is called to check on trigger status.

mode allows you to specify no triggering, single scan triggering, or software triggering on all
instruments except the DI-221TC.

NOTE
If you have a DI-221TC and you wish to perform triggering
operations, you can reconfigure your DI-221TC to act like a DI-
220, thus allowing triggering operations. This is done by running
file DI220.BAT (for hardware with 16 channels or less) or file
DI221M.BAT (for hardware with more than 16 channels) during
startup instead of DI221.BAT.

Programmer’s SDK Manual

Function Reference
81

Triggering occurs on the first channel in the input scan list. For example, if channel 3 is listed
as the first element in the input scan list, triggering will occur on channel 3.

Mode 0 (no triggering) allows data to be continuously acquired to your buffer the instant
di_start_scan is called. Data acquisition does not stop when the buffer is full, the buffer
simply gets overwritten.

Modes 1 (for analog trigger signals) and 2 (for digital trigger signals) are single scan trigger
modes. The single scan mode is used when it is only necessary to monitor one trigger
occurrence. For example; a buffer is allocated, scanning is started, the trigger condition
occurs, n pre-trigger data samples and m post-trigger data samples are collected in the buffer
(if pre- and/or post-trigger data is desired), and scanning is stopped.

Mode 5 (software triggering) is similar to mode 0 in that data is acquired to your buffer the
instant di_start_scan is called, but differs from mode 0 in that you can specify the number of
data points that will be acquired. When the buffer contains the desired number of data points,
scanning is stopped. This mode is normally used without pre-trigger data. The value entered
for trig_post specifies how many data points will be acquired.

The following flow chart illustrates a typical sequence of function calls required to extract
data from the input buffer with pre-trigger data requested:

Programmer’s SDK Manual

Function Reference
82

hystx allows you to specify a hysteresis index. This index corresponds to a value shown in a
table in the structure.

scnx is an input scan list index (pointer) to the trigger channel (0 for the first channel).

trig_level allows you to specify the point at which the trigger occurs. If you wish to trigger
on an analog signal, specify a 12-bit, 14-bit, or 16-bit (depending on your instrument’s
capability), 2’s complement, left-justified value. If you are triggering on a digital signal,
specify one of the eight digital input bits as the trigger according to the following illustration:

7 6 5 4 3 2 1 0 Digital input bits

2 2 2 2 2 2 2 2
7 6 5 4 3 2 1 0

trig_level value

For example, suppose you wanted to trigger on digital input bit 4. You would specify
mode.trig_level = 16.

trig_slope allows you to trigger on the rising slope of the analog or digital signal (if
trig_slope = 0) or on the falling slope of the analog or digital signal (if trig_slope = 1).

Programmer’s SDK Manual

Function Reference
83

The digital signal is 1 if any of the specified digital input bits is high. A transition in the
result is required to generate a digital trigger.

trig_pre allows you to specify how many data samples to acquire before the trigger
condition occurs. If any amount of pre-trigger information is requested, data is automatically
acquired to your buffer when di_start_scan is issued in anticipation of the trigger. If no
pre-trigger information is requested (trig_pre = 0), no data is acquired in the buffer until
the trigger condition occurs.

trig_post allows you to specify how many data samples to acquire after the trigger
condition occurs.

• Special Triggering Considerations

DI-200, DI-201, and DI-210 Only
The size of the input buffer you allocate for acquiring the data depends on several factors. At
a minimum, this buffer must be large enough to hold the pre- and post-trigger data (if
requested) for each element in the input list. For example, suppose we have 2 elements in the
input list and we would like to acquire 4 scans of pre-trigger information and 8 scans of post-
trigger information. The minimum input buffer size is calculated as follows:

()2 4 8 + = Input buffer size

Using the di_buffer_alloc function, you would specify 24 samples of memory for your input
buffer (1 sample = 1 word). Refer to the following illustration for a graphical representation
of the input buffer:

Post-trigPre-trig

Trigger

0
Samples

24
Samples

7

Input buffer

The di_trigger_status function can be used to check the status of the sampling progress.
When the specified amount of post-trigger samples have been acquired, the
di_trigger_status function returns a “trigger done” condition. To extract the pre- and post-
trigger data, you need to find the beginning of the pre-trigger data then write out n + m
samples to a storage buffer. This is done by counting back m + n samples from the “trigger
done” point to find the beginning of the pre-trigger data.

Programmer’s SDK Manual

Function Reference
84

DI-220, DI-221TC, DI-222, DI-400, DI-401, DI-410, DI-500, DI-510, DI-720, DI-730, and
DI-5001 Only
When in the triggering mode on DI-220, DI-221TC, and DI-222 instruments, the maximum
number of samples that can be acquired is 8180 if doing an input operation only or 4090 if
doing a simultaneous input/output operation.

When in the triggering mode on DI-400, DI-401, and DI-410 instruments, the maximum
number of samples that can be acquired is 15,000 samples, or 8192 if a simultaneous
input/output operation is being done.

When in the triggering mode on DI-500, DI-510, DI-720, DI-730, and DI-5001 instruments,
the maximum number of samples that can be acquired is 7,500 samples (or 4096 if a
simultaneous input/output operation is being done), provided that the sample rate is less than
or equal to the maximum communications rate, which is defined by the type of parallel port
the instrument is connected to (refer to the di_burst_rate function for complete
communications rate details).

The size of the input buffer you allocate for acquiring the data depends on several factors. At
a minimum, this buffer must be large enough to hold the pre- and post-trigger data (if
requested) for each element in the input list. For example, suppose we have 16 channels on
the input list and we would like to acquire 200 samples of pre-trigger information and 100
samples of post-trigger information. The minimum input buffer size is calculated as follows:

()16 200 + 100 = Input buffer size

Using the di_buffer_alloc function, you would specify 4800 samples of memory for your
input buffer (1 sample = 1 word). Note that the di_buffer_alloc function requires a minimum
size of 4096 words for DI-220, DI-221TC, DI-222, DI-400, DI-401, DI-410, DI-500, DI-510,
DI-720, DI-730, and DI-5001 instruments. Refer to the following illustration for a graphical
representation of the input buffer:

Jitter (Trigger Uncertainty)
Another special triggering consideration that is common to all instruments is something
called jitter. Jitter can be defined as trigger uncertainty and is illustrated as follows:

Programmer’s SDK Manual

Function Reference
85

The maximum amount of jitter can be calculated as follows:

() ()

list. counter input the of 0) (element element first the of valuecounter The = C

greater). is (whichever list output or input the of length = L :where

1 + C 1L
rate burst

1
 = jittermax

0

0

 +

• Return Value

This function returns error code.

• Dependencies

di_open
di_inlist

• Example

#include "200sdk.h"

int errcode;
struct di_mode_struct mode;
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr) ;
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

mode.mode = 1; /* analog triggering enabled */
mode.hystx = 0; /* reserved for compatibility */
mode.scnx = 0; /* reserved for compatibility */
mode.trig_level = 0; /* trigger on zero crossing */
mode.trig_slope = 0; /* trigger on positive slope */
mode.trig_pre = 1000; /* 1000 pre trigger samples */

Programmer’s SDK Manual

Function Reference
86

mode.trig_post = 2000; /* 2000 post trigger samples */
if(errcode = di_mode(&mode)){ /* initialize mode */

di_strerr(errcode,errstr) ;
printf("%s",errstr);

}
di_close();

}

di_open

• Summary

int di_open(void);

• Description

The di_open function opens the device for communication. This function has to be called
before any of the other functions can be called.

• Return Values

DI_NO_ERR No error
DI_DRIVER_ERR Device driver not found
DI_COMM_ERR Communication error

• Dependencies

none

• Example

#include "200sdk.h"

int errcode;
char errstr[255];

main()
{

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

Programmer’s SDK Manual

Function Reference
87

printf("Device installed successfully.....\n");
di_close();

}

di_outlist
(not available on DI-401 and DI-700 instruments)

• Summary

int di_outlist(output_list);

struct di_outlist_struct{
unsigned unipolar; /* unipolar/bipolar. 0 = BI, 1 = UN (for all

instruments except DI-400, DI-410, DI-500, DI-
510, DI-720, DI-730, and DI-5001)

or

DAC1/DAC2. 0 = DAC1, 1 = DAC2 (for DI-400, DI-
410, DI-500, DI-510, DI-720, DI-730, and DI-
5001 instruments) */

unsigned digital; /* 1=buffer data is digital; 0=buffer data is analog */
unsigned dig_out_enable /* 1=enables dig out, 0=disables dig out */
unsigned dig_data; /* digital data is D0 thru D7 */
unsigned counter; /* scan position counter */
}*output_list;

• Description

The di_outlist function initializes the output list (output functions are not available on DI-
401 instruments). This function has to be called after di_list_length and before
di_start_scan. Note that the two LSB's of data in each location of the output buffer must be
zero. Refer to the paragraph titled Input and Output Data Buffer Architecture at the
beginning of this chapter for more details.

In the structure, when the buffer data is specified as digital, the digital output should be
disabled. DMA data format is left justified.

Since the output scan list is capable of holding 16 entries, it is possible to program each
channel in the output list for a different output rate. The equation for determining the value
required for a specific output rate is as follows:

()
O

B

L C
=

+1

Programmer’s SDK Manual

Function Reference
88

Where: O = desired output rate of the output list entry, B = burst rate of the instrument, L =
length of the input or output list (whichever is greater), and C = “count weight” or output
counter list entry.

Since simultaneous input and output operations are possible, some consideration must be
given to input and output synchronization. The following table illustrates the order of each
input/output operation, with respect to the other operations. In this example, there are 10
elements each in the input and output scan lists. Each input or output is referenced to its
position in the input or output scan list.

Sample
Number

Analog
Input

Analog
Output

Digital In
DMA

Digital Out
DMA

Digital Out
Inlist

Digital Out
Outlist

1 - - - - 0 -
2 - - - 0 1 0
3 0 - 0 1 2 1
4 1 0 1 2 3 2
5 2 1 2 3 4 3
6 3 2 3 4 5 4
7 4 3 4 5 6 5
8 5 4 5 6 7 6
9 6 5 6 7 8 7

10 7 6 7 8 9 8
11 8 7 8 9 0 9
12 9 8 9 0 1 0
13 0 9 0 1 2 1
14 1 0 1 2 3 2
15 2 1 2 3 4 3
16 3 2 3 4 5 4
17 4 3 4 5 6 5
18 5 4 5 6 7 6
19 6 5 6 7 8 7
20 7 6 7 8 9 8

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_OUTLIST_ERR Value in outlist structure out of range error

• Dependencies

di_open
di_list_length

Programmer’s SDK Manual

Function Reference
89

• Example

#include "200sdk.h"

int errcode;
#define ODIM 16; /* largest value allowed */
struct di_outlist_struct outlist[ODIM] = {0}; /* input list cleared */
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

/* The following initializes scan list position 0 and must be repeated for all
positions intended to be scanned */

outlist[0].unipolar = 0; /* bipolar */
outlist[0].digital = 1; /* buffer data is digital */
outlist[0] dig_out_enable = 0 /* disable digital output */
outlist[0].dig_data = 0x20; /* digital data to be output */
outlist[0].counter = 10; /* init counter */

di_list_length (ODIM, 0);
if(errcode = di_outlist(outlist)){ /* initialize output list */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Output list initialized.....\n");
di_close();

}

di_set_data_mode
(DI-700 instruments only)

• Summary

void di_set_data_mode(datamode);

unsigned datamode; /* sets DI-700 data mode: 1=16-bit, 0=14-bit */

• Description

di_set_data_mode can be passed an argument of 1 to put the DI-700 in 16-bit data mode, in
which the least significant 2 bits of each data word are used for higher resolution instead of
passing the inverse of the DI1 and DI0 digital inputs with the first channel data (note that

Programmer’s SDK Manual

Function Reference
90

special versions of WINDAQ recording and playback software are required to support 16-bit
data files). Passing an argument of 0 returns the DI-700 to 14-bit data mode.

This function must be called before scanning starts.

• Return Value

void

• Dependencies

di_open
di_inlist or di_outlist (di_outlist not available on DI-401 and DI-700 instruments)
di_list_length
di_mode
di_buffer_alloc

di_start_scan

• Summary

int di_start_scan(void);

• Description

The di_start_scan function starts scanning.

On all instruments except the DI-500 Series, scanning will stop if data is sent from the output
buffer to the instrument with either of the two least significant data bits set (the two LSB's of
data must be zero to start the scanning process).

While scanning, you should not issue any other functions. If you call other functions while
actively scanning, unexpected results may occur. If you wish to use any other functions, you
must first stop scanning, call the desired function, then resume scanning.

Programmer’s SDK Manual

Function Reference
91

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_START_SCN_ERR Start scan error

• Dependencies

di_open
di_inlist or di_outlist (di_outlist not available on DI-401 and DI-700 instruments)
di_list_length
di_mode
di_buffer_alloc

• Example

#include "200sdk.h"

int errcode;
#define IDIM 256; /* largest value allowed */
struct di_inlist_struct inlist[IDIM] = {0}; /* input list cleared */
struct di_mode_struct mode = {0}; /* mode structure */
char errstr[255];
int * input_buffer;

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

inlist[0].chan = 5; /* channel 5 */
inlist[0].diff = 0; /* single ended */
inlist[0].gain = 0; /* gain of 1 */
inlist[0].unipolar = 0; /* bipolar */
inlist[0].ave = 0; /* averaging off */
inlist[0].counter = 100; /* init counter */

di_list_length (IDIM, 0);
if(errcode = di_inlist(inlist)){ /* initialize the input list */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Input list initialized.....\n");

mode.mode = 3; /* continuous triggering enabled */
mode.trig_level = 0; /* trigger on zero crossing */
mode trig_slope = 0; /* trigger on positive slope */

Programmer’s SDK Manual

Function Reference
92

mode.trig_pre = 0; /* no pre-trigger samples */
mode.trig_post = 0; /* no post-trigger samples */

if(errcode = di_mode(mode)){ /* set mode */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Mode set.....\n");
input_buffer = di_buffer_alloc (0, 40%);
if (input_buffer = = NULL)

printf("Failed to allocate buffer");
if(errcode = di_start_scan()){ /* start scanning */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Scanning started.....\n");

di_close();
}

di_status_read

• Summary

unsigned di_status_read(dest,num_scans);

int far * dest; /* destination for input data buffer */
unsigned num_scans; /* number of data points to be copied */

• Description

The di_status_read function reads the status of the input buffer (opened by di_buffer_alloc)
and copies the newest data points (num_scans) collected in the buffer from the previous call
of this function to your specified destination (dest).

If there are not enough data points available in the input buffer (as specified by num_scans),
this function will wait until there are enough available.

If num_scans is set to 0, this function will return the number of data points available without
waiting.

• Return Value

Programmer’s SDK Manual

Function Reference
93

The di_status_read function returns the number of data points in the buffer which still have
not been copied.

• Dependencies

di_open di_buffer_alloc
di_inlist di_start_scan

• Example

#include "220sdk.h"

int *input_buffer, errcode, list_length, samples;
struct di_mode_struct mode = {0};
struct di_inlist_struct inlist[256] = {0};
char errstr[255];
int analog_in[1024];

main()
{

list_length = 5;
if(errcode = di_open()){ /* open the device for comm */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
/* allocate 4096 words for input */
if((input_buffer = di_buffer_alloc(0,4096) == NULL)

printf("Insufficient memory or input buffer already allocated...\n");
if(errcode = di_inlist(inlist)) /* Set up the input list */

printf("Input list error...\n");
if(errcode = di_mode(mode)) /* Set mode */

printf("Mode error...\n");
if(errcode = di_start_scan()) /* Start scanning */

printf("Start scan error...\n");
while(di_status_read (analog_in, 0) < 100); /* Main loop executes until

100 data points are
accumulated. */

di_status_read (analog_in, 100); /* Copy 100 data points to the
analog_in buffer. */

if(errcode = di_close()){ /* close the device */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
}

di_stop_scan

• Summary

Programmer’s SDK Manual

Function Reference
94

int di_stop_scan(void);

• Description

The di_stop_scan function stops scanning.

• Return Value

DI_NO_ERR No error
DI_OPENED_ERR Device not opened
DI_COMM_ERR Communication error
DI_STOP_SCN_ERR Stop scan error

• Dependencies

di_open
di_list_length
di_mode
di_start_scan

• Example

#include "200sdk.h"

int errcode;
#define IDIM 256; /* largest value allowed */
struct di_inlist_struct inlist[IDIM] = {0}; /* input list cleared */
struct di_mode_struct mode = {0}; /* mode structure */
char errstr[255];
int * input_buffer;

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

inlist[0].chan = 5; /* channel 5 */
inlist[0].diff = 0; /* single ended */
inlist[0].gain = 0; /* gain of 1 */
inlist[0].unipolar = 0; /* bipolar */
inlist[0].ave = 0; /* averaging off */
inlist[0].counter = 100; /* init counter */

di_list_length (IDIM, 0);

Programmer’s SDK Manual

Function Reference
95

if(errcode = di_inlist(inlist)){ /* initialize the input list */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Input list initialized.....\n");

mode.mode = 1; /* analog triggering enabled */
mode.trig_level = 0; /* trigger on zero crossing */
mode.trig_slope = 0; /* trigger on positive slope */
mode.trig_pre = 0; /* no pre-trigger samples desired */
mode.trig_post = 0; /* no post-trigger samples desired */

if(errcode = di_mode(mode)){ /* set mode */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Mode set.....\n");
input_buffer = di_buffer_alloc (0, 4096);
if(errcode = di_start_scan()){ /* start scanning */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Scanning started.....\n");

if(errcode = di_stop_scan()){ /* stop scanning */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Scanning stopped.....\n");

di_close();
}

di_strerr

• Summary

int di_strerr(err_code,err_str);

unsigned err_code; /* error code returned by function call */
char *err_str; /* pointer to string to return error */

• Description

The di_strerr function maps err_code to an error-message string. The pointer to the string
is passed to the function and the string is modified by the function. The maximum length of
the error message string is 255 characters.

Programmer’s SDK Manual

Function Reference
96

• Return Value

The di_strerr function returns a number of characters in err_str .

• Dependencies

di_open

• Example

#include "200sdk.h"

int errcode;
char errstr[255];

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");

di_close();

}

di_trigger_status
(not available on DI-700 instruments)

• Summary

int di_trigger_status(void);

• Description

The di_trigger_status function returns the trigger status in the form of a 16-bit integer.

Programmer’s SDK Manual

Function Reference
97

• Return Value

DI-200, DI-201, and DI-210 Only

Bits 15 thru 0
Number of times triggered

Bits 15 through 0 return the number of times triggered. Data is being written to the buffer
constantly. Auto re-initialization occurs when a full buffer “wraps around” to the beginning,
overwriting the existing data in the buffer.

Input buffer

auto re-initialization

For example, suppose your buffer is 1000 samples in size and you are sampling at 1 kHz.
With these parameters, the buffer would auto re-initialize every 1 second.

DI-220, DI-221TC, and DI-222 Only
The two LSB’s return the trigger status as follows:

0 collecting pre-trigger data
1 collecting post-trigger data

To tell when the trigger is done, wait until the value returned by di_buffer_status has
advanced by the number of pre- and post-trigger points.

DI-400, DI-401, DI-410, DI-500, DI-510, DI-720, DI-730, and DI-5001 Only
The two LSB’s return the trigger status as follows:

0 collecting pre- or post-trigger data (no distinction is made
between pre- and post-trigger data)

2 trigger done (all pre- and post-trigger data has been collected)

• Dependencies

di_open
di_mode

• Example

#include "200sdk.h"

Programmer’s SDK Manual

Function Reference
98

struct di_inlist_struct inlist(255) = {0};
int errcode;
char errstr[255];
struct di_mode_struct mode;
int * input_buffer;

main()
{
int i;

if(errcode = di_open()){ /* open the device for comm */
di_strerr(errcode,errstr);
printf("%s",errstr);

}
else

printf("Device installed successfully.....\n");
di_list_length (1,0);
di_inlist (inlist);
mode.mode = 1; /* analog triggering enabled */
mode.trig_level = 0; /* trigger on zero crossing */
mode.trig_slope = 0; /* trigger on positive slope */
mode.trig_pre = 1000; /* 1000 pre trigger samples */
mode.trig_post = 2000; /* 2000 post trigger samples */
if(errcode = di_mode(&mode)){ /*initialize mode */

di_strerr(errcode,errstr);
printf("%s",errstr);

}
input_buffer = di_buffer_alloc (0, 4096);
di_start_scan(); /* start scanning */
while(di_trigger_status() !=1) /* wait for trigger to finish */

;
printf("Trigger buffers filled.\n");
di_close();

}

DATAQ Instruments, Inc.
241 Springside Drive
Akron, Ohio 44333

Telephone: 330-668-1444
Fax: 330-666-5434

E-mail: support@dataq.com

Vertrieb: / Distributed by:

ALTHEN GmbH Mess- und Sensortechnik
Frankfurter Str. 150-152 Tel.: +49 (0)6195 7006-0 http://www.althen.de
65779 Kelkheim / Deutschland Fax: +49 (0)6195 700666 E-Mail: info@althen.de

